Metamath Proof Explorer


Theorem prm23ge5

Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021)

Ref Expression
Assertion prm23ge5 PP=2P=3P5

Proof

Step Hyp Ref Expression
1 ax-1 P=2P=3P5PP=2P=3P5
2 3ioran ¬P=2P=3P5¬P=2¬P=3¬P5
3 3ianor ¬5P5P¬5¬P¬5P
4 eluz2 P55P5P
5 3 4 xchnxbir ¬P5¬5¬P¬5P
6 5nn 5
7 6 nnzi 5
8 7 pm2.24i ¬5¬P=2¬P=3PP=2P=3P5
9 pm2.24 P¬PP=2P=3P5
10 prmz PP
11 9 10 syl11 ¬PPP=2P=3P5
12 11 a1d ¬P¬P=2¬P=3PP=2P=3P5
13 10 zred PP
14 5re 5
15 14 a1i P5
16 13 15 ltnled PP<5¬5P
17 prm23lt5 PP<5P=2P=3
18 ioran ¬P=2P=3¬P=2¬P=3
19 pm2.24 P=2P=3¬P=2P=3P=2P=3P5
20 18 19 biimtrrid P=2P=3¬P=2¬P=3P=2P=3P5
21 17 20 syl PP<5¬P=2¬P=3P=2P=3P5
22 21 ex PP<5¬P=2¬P=3P=2P=3P5
23 16 22 sylbird P¬5P¬P=2¬P=3P=2P=3P5
24 23 com3l ¬5P¬P=2¬P=3PP=2P=3P5
25 8 12 24 3jaoi ¬5¬P¬5P¬P=2¬P=3PP=2P=3P5
26 5 25 sylbi ¬P5¬P=2¬P=3PP=2P=3P5
27 26 com12 ¬P=2¬P=3¬P5PP=2P=3P5
28 27 3impia ¬P=2¬P=3¬P5PP=2P=3P5
29 2 28 sylbi ¬P=2P=3P5PP=2P=3P5
30 1 29 pm2.61i PP=2P=3P5