| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1 | ⊢ ( ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 2 |  | 3ioran | ⊢ ( ¬  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  ↔  ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3  ∧  ¬  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) | 
						
							| 3 |  | 3ianor | ⊢ ( ¬  ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  5  ≤  𝑃 )  ↔  ( ¬  5  ∈  ℤ  ∨  ¬  𝑃  ∈  ℤ  ∨  ¬  5  ≤  𝑃 ) ) | 
						
							| 4 |  | eluz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ↔  ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  5  ≤  𝑃 ) ) | 
						
							| 5 | 3 4 | xchnxbir | ⊢ ( ¬  𝑃  ∈  ( ℤ≥ ‘ 5 )  ↔  ( ¬  5  ∈  ℤ  ∨  ¬  𝑃  ∈  ℤ  ∨  ¬  5  ≤  𝑃 ) ) | 
						
							| 6 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 7 | 6 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 8 | 7 | pm2.24i | ⊢ ( ¬  5  ∈  ℤ  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 9 |  | pm2.24 | ⊢ ( 𝑃  ∈  ℤ  →  ( ¬  𝑃  ∈  ℤ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 10 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 11 | 9 10 | syl11 | ⊢ ( ¬  𝑃  ∈  ℤ  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 12 | 11 | a1d | ⊢ ( ¬  𝑃  ∈  ℤ  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 13 | 10 | zred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 14 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  5  ∈  ℝ ) | 
						
							| 16 | 13 15 | ltnled | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  <  5  ↔  ¬  5  ≤  𝑃 ) ) | 
						
							| 17 |  | prm23lt5 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  ( 𝑃  =  2  ∨  𝑃  =  3 ) ) | 
						
							| 18 |  | ioran | ⊢ ( ¬  ( 𝑃  =  2  ∨  𝑃  =  3 )  ↔  ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 ) ) | 
						
							| 19 |  | pm2.24 | ⊢ ( ( 𝑃  =  2  ∨  𝑃  =  3 )  →  ( ¬  ( 𝑃  =  2  ∨  𝑃  =  3 )  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 20 | 18 19 | biimtrrid | ⊢ ( ( 𝑃  =  2  ∨  𝑃  =  3 )  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  <  5 )  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  <  5  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 23 | 16 22 | sylbird | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  5  ≤  𝑃  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 24 | 23 | com3l | ⊢ ( ¬  5  ≤  𝑃  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 25 | 8 12 24 | 3jaoi | ⊢ ( ( ¬  5  ∈  ℤ  ∨  ¬  𝑃  ∈  ℤ  ∨  ¬  5  ≤  𝑃 )  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 26 | 5 25 | sylbi | ⊢ ( ¬  𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 27 | 26 | com12 | ⊢ ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3 )  →  ( ¬  𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) ) | 
						
							| 28 | 27 | 3impia | ⊢ ( ( ¬  𝑃  =  2  ∧  ¬  𝑃  =  3  ∧  ¬  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 29 | 2 28 | sylbi | ⊢ ( ¬  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) ) | 
						
							| 30 | 1 29 | pm2.61i | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) |