| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 2 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 3 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 4 |
|
sqcl |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 ↑ 2 ) ∈ ℂ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑚 ↑ 2 ) ∈ ℂ ) |
| 6 |
5
|
sqcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
| 7 |
|
2cn |
⊢ 2 ∈ ℂ |
| 8 |
|
sqcl |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 9 |
|
mulcl |
⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 10 |
4 8 9
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 11 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) → ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ∈ ℂ ) |
| 12 |
7 10 11
|
sylancr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ∈ ℂ ) |
| 13 |
6 12
|
subcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 15 |
14
|
sqcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑛 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
| 16 |
|
mulcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) |
| 17 |
16
|
ancoms |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) |
| 18 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑚 · 𝑛 ) ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) |
| 19 |
7 17 18
|
sylancr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) |
| 20 |
19
|
sqcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 21 |
13 15 20
|
add32d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 22 |
6 12 20
|
subadd23d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 23 |
|
sqmul |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑚 · 𝑛 ) ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) ) |
| 24 |
7 17 23
|
sylancr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) ) |
| 25 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 26 |
25
|
a1i |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 2 ↑ 2 ) = 4 ) |
| 27 |
|
sqmul |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑚 · 𝑛 ) ↑ 2 ) = ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 28 |
27
|
ancoms |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 𝑚 · 𝑛 ) ↑ 2 ) = ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 29 |
26 28
|
oveq12d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 ↑ 2 ) · ( ( 𝑚 · 𝑛 ) ↑ 2 ) ) = ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 30 |
24 29
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) = ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 31 |
30
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 32 |
|
4cn |
⊢ 4 ∈ ℂ |
| 33 |
|
subdir |
⊢ ( ( 4 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ∈ ℂ ) → ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 34 |
32 7 10 33
|
mp3an12i |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 35 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 36 |
32 7 7 35
|
subaddrii |
⊢ ( 4 − 2 ) = 2 |
| 37 |
36
|
oveq1i |
⊢ ( ( 4 − 2 ) · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 38 |
34 37
|
eqtr3di |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 4 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 39 |
31 38
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) = ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 41 |
22 40
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 43 |
21 42
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 44 |
|
binom2sub |
⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 45 |
4 8 44
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) − ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) |
| 47 |
|
binom2 |
⊢ ( ( ( 𝑚 ↑ 2 ) ∈ ℂ ∧ ( 𝑛 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 48 |
4 8 47
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) = ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( 2 · ( ( 𝑚 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 49 |
43 46 48
|
3eqtr4d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) |
| 50 |
49
|
3adant3 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 52 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → 𝑘 ∈ ℂ ) |
| 53 |
4
|
3ad2ant2 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑚 ↑ 2 ) ∈ ℂ ) |
| 54 |
8
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 55 |
53 54
|
subcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 56 |
52 55
|
sqmuld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 57 |
17
|
3adant3 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑚 · 𝑛 ) ∈ ℂ ) |
| 58 |
7 57 18
|
sylancr |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · ( 𝑚 · 𝑛 ) ) ∈ ℂ ) |
| 59 |
52 58
|
sqmuld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) |
| 60 |
56 59
|
oveq12d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) + ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 61 |
|
sqcl |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 ↑ 2 ) ∈ ℂ ) |
| 62 |
61
|
3ad2ant3 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑘 ↑ 2 ) ∈ ℂ ) |
| 63 |
55
|
sqcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ∈ ℂ ) |
| 64 |
58
|
sqcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 65 |
62 63 64
|
adddid |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) + ( ( 𝑘 ↑ 2 ) · ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 66 |
60 65
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 ↑ 2 ) · ( ( ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ↑ 2 ) + ( ( 2 · ( 𝑚 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 67 |
53 54
|
addcld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ∈ ℂ ) |
| 68 |
52 67
|
sqmuld |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) |
| 69 |
51 66 68
|
3eqtr4d |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 70 |
1 2 3 69
|
syl3an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 71 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 72 |
|
oveq1 |
⊢ ( 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) → ( 𝐵 ↑ 2 ) = ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) |
| 73 |
71 72
|
oveqan12d |
⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 74 |
73
|
3adant3 |
⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 75 |
|
oveq1 |
⊢ ( 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐶 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 76 |
75
|
3ad2ant3 |
⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( 𝐶 ↑ 2 ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) |
| 77 |
74 76
|
eqeq12d |
⊢ ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ↔ ( ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) + ( ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) ) |
| 78 |
70 77
|
syl5ibrcom |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 79 |
78
|
3expa |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 80 |
79
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) ) |
| 81 |
80
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |