Metamath Proof Explorer
Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995)
|
|
Ref |
Expression |
|
Hypotheses |
3jaoi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
3jaoi.2 |
⊢ ( 𝜒 → 𝜓 ) |
|
|
3jaoi.3 |
⊢ ( 𝜃 → 𝜓 ) |
|
Assertion |
3jaoi |
⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jaoi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
3jaoi.2 |
⊢ ( 𝜒 → 𝜓 ) |
3 |
|
3jaoi.3 |
⊢ ( 𝜃 → 𝜓 ) |
4 |
1 2 3
|
3pm3.2i |
⊢ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) |
5 |
|
3jao |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜓 ) ∧ ( 𝜃 → 𝜓 ) ) → ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜃 ) → 𝜓 ) |