Metamath Proof Explorer


Theorem 3jaoi

Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995)

Ref Expression
Hypotheses 3jaoi.1 ( 𝜑𝜓 )
3jaoi.2 ( 𝜒𝜓 )
3jaoi.3 ( 𝜃𝜓 )
Assertion 3jaoi ( ( 𝜑𝜒𝜃 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 3jaoi.1 ( 𝜑𝜓 )
2 3jaoi.2 ( 𝜒𝜓 )
3 3jaoi.3 ( 𝜃𝜓 )
4 1 2 3 3pm3.2i ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) )
5 3jao ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ∧ ( 𝜃𝜓 ) ) → ( ( 𝜑𝜒𝜃 ) → 𝜓 ) )
6 4 5 ax-mp ( ( 𝜑𝜒𝜃 ) → 𝜓 )