| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1 |  |-  ( ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 2 |  | 3ioran |  |-  ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) <-> ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) ) | 
						
							| 3 |  | 3ianor |  |-  ( -. ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) | 
						
							| 4 |  | eluz2 |  |-  ( P e. ( ZZ>= ` 5 ) <-> ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) ) | 
						
							| 5 | 3 4 | xchnxbir |  |-  ( -. P e. ( ZZ>= ` 5 ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) | 
						
							| 6 |  | 5nn |  |-  5 e. NN | 
						
							| 7 | 6 | nnzi |  |-  5 e. ZZ | 
						
							| 8 | 7 | pm2.24i |  |-  ( -. 5 e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 9 |  | pm2.24 |  |-  ( P e. ZZ -> ( -. P e. ZZ -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 10 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 11 | 9 10 | syl11 |  |-  ( -. P e. ZZ -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 12 | 11 | a1d |  |-  ( -. P e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 13 | 10 | zred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 14 |  | 5re |  |-  5 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( P e. Prime -> 5 e. RR ) | 
						
							| 16 | 13 15 | ltnled |  |-  ( P e. Prime -> ( P < 5 <-> -. 5 <_ P ) ) | 
						
							| 17 |  | prm23lt5 |  |-  ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) | 
						
							| 18 |  | ioran |  |-  ( -. ( P = 2 \/ P = 3 ) <-> ( -. P = 2 /\ -. P = 3 ) ) | 
						
							| 19 |  | pm2.24 |  |-  ( ( P = 2 \/ P = 3 ) -> ( -. ( P = 2 \/ P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 20 | 18 19 | biimtrrid |  |-  ( ( P = 2 \/ P = 3 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( P e. Prime /\ P < 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 22 | 21 | ex |  |-  ( P e. Prime -> ( P < 5 -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 23 | 16 22 | sylbird |  |-  ( P e. Prime -> ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 24 | 23 | com3l |  |-  ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 25 | 8 12 24 | 3jaoi |  |-  ( ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 26 | 5 25 | sylbi |  |-  ( -. P e. ( ZZ>= ` 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 27 | 26 | com12 |  |-  ( ( -. P = 2 /\ -. P = 3 ) -> ( -. P e. ( ZZ>= ` 5 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) | 
						
							| 28 | 27 | 3impia |  |-  ( ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 29 | 2 28 | sylbi |  |-  ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) | 
						
							| 30 | 1 29 | pm2.61i |  |-  ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) |