| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 2 |
1
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
| 3 |
2
|
adantr |
|- ( ( P e. Prime /\ P < 5 ) -> P e. NN0 ) |
| 4 |
|
4nn0 |
|- 4 e. NN0 |
| 5 |
4
|
a1i |
|- ( ( P e. Prime /\ P < 5 ) -> 4 e. NN0 ) |
| 6 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 7 |
6
|
breq2i |
|- ( P < 5 <-> P < ( 4 + 1 ) ) |
| 8 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 9 |
|
4z |
|- 4 e. ZZ |
| 10 |
|
zleltp1 |
|- ( ( P e. ZZ /\ 4 e. ZZ ) -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
| 11 |
8 9 10
|
sylancl |
|- ( P e. Prime -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
| 12 |
11
|
biimprd |
|- ( P e. Prime -> ( P < ( 4 + 1 ) -> P <_ 4 ) ) |
| 13 |
7 12
|
biimtrid |
|- ( P e. Prime -> ( P < 5 -> P <_ 4 ) ) |
| 14 |
13
|
imp |
|- ( ( P e. Prime /\ P < 5 ) -> P <_ 4 ) |
| 15 |
|
elfz2nn0 |
|- ( P e. ( 0 ... 4 ) <-> ( P e. NN0 /\ 4 e. NN0 /\ P <_ 4 ) ) |
| 16 |
3 5 14 15
|
syl3anbrc |
|- ( ( P e. Prime /\ P < 5 ) -> P e. ( 0 ... 4 ) ) |
| 17 |
|
fz0to4untppr |
|- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
| 18 |
17
|
eleq2i |
|- ( P e. ( 0 ... 4 ) <-> P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
| 19 |
|
elun |
|- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) <-> ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) ) |
| 20 |
|
eltpi |
|- ( P e. { 0 , 1 , 2 } -> ( P = 0 \/ P = 1 \/ P = 2 ) ) |
| 21 |
|
nnne0 |
|- ( P e. NN -> P =/= 0 ) |
| 22 |
|
eqneqall |
|- ( P = 0 -> ( P =/= 0 -> ( P = 2 \/ P = 3 ) ) ) |
| 23 |
22
|
com12 |
|- ( P =/= 0 -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
| 24 |
1 21 23
|
3syl |
|- ( P e. Prime -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
| 25 |
24
|
com12 |
|- ( P = 0 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 26 |
|
eleq1 |
|- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
| 27 |
|
1nprm |
|- -. 1 e. Prime |
| 28 |
27
|
pm2.21i |
|- ( 1 e. Prime -> ( P = 2 \/ P = 3 ) ) |
| 29 |
26 28
|
biimtrdi |
|- ( P = 1 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 30 |
|
orc |
|- ( P = 2 -> ( P = 2 \/ P = 3 ) ) |
| 31 |
30
|
a1d |
|- ( P = 2 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 32 |
25 29 31
|
3jaoi |
|- ( ( P = 0 \/ P = 1 \/ P = 2 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 33 |
20 32
|
syl |
|- ( P e. { 0 , 1 , 2 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 34 |
|
elpri |
|- ( P e. { 3 , 4 } -> ( P = 3 \/ P = 4 ) ) |
| 35 |
|
olc |
|- ( P = 3 -> ( P = 2 \/ P = 3 ) ) |
| 36 |
35
|
a1d |
|- ( P = 3 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 37 |
|
eleq1 |
|- ( P = 4 -> ( P e. Prime <-> 4 e. Prime ) ) |
| 38 |
|
4nprm |
|- -. 4 e. Prime |
| 39 |
38
|
pm2.21i |
|- ( 4 e. Prime -> ( P = 2 \/ P = 3 ) ) |
| 40 |
37 39
|
biimtrdi |
|- ( P = 4 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 41 |
36 40
|
jaoi |
|- ( ( P = 3 \/ P = 4 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 42 |
34 41
|
syl |
|- ( P e. { 3 , 4 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 43 |
33 42
|
jaoi |
|- ( ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 44 |
19 43
|
sylbi |
|- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
| 45 |
44
|
com12 |
|- ( P e. Prime -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
| 46 |
45
|
adantr |
|- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
| 47 |
18 46
|
biimtrid |
|- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( 0 ... 4 ) -> ( P = 2 \/ P = 3 ) ) ) |
| 48 |
16 47
|
mpd |
|- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |