| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 2 | 1 | nnnn0d |  |-  ( P e. Prime -> P e. NN0 ) | 
						
							| 3 | 2 | adantr |  |-  ( ( P e. Prime /\ P < 5 ) -> P e. NN0 ) | 
						
							| 4 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 5 | 4 | a1i |  |-  ( ( P e. Prime /\ P < 5 ) -> 4 e. NN0 ) | 
						
							| 6 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 7 | 6 | breq2i |  |-  ( P < 5 <-> P < ( 4 + 1 ) ) | 
						
							| 8 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 9 |  | 4z |  |-  4 e. ZZ | 
						
							| 10 |  | zleltp1 |  |-  ( ( P e. ZZ /\ 4 e. ZZ ) -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( P e. Prime -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) | 
						
							| 12 | 11 | biimprd |  |-  ( P e. Prime -> ( P < ( 4 + 1 ) -> P <_ 4 ) ) | 
						
							| 13 | 7 12 | biimtrid |  |-  ( P e. Prime -> ( P < 5 -> P <_ 4 ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( P e. Prime /\ P < 5 ) -> P <_ 4 ) | 
						
							| 15 |  | elfz2nn0 |  |-  ( P e. ( 0 ... 4 ) <-> ( P e. NN0 /\ 4 e. NN0 /\ P <_ 4 ) ) | 
						
							| 16 | 3 5 14 15 | syl3anbrc |  |-  ( ( P e. Prime /\ P < 5 ) -> P e. ( 0 ... 4 ) ) | 
						
							| 17 |  | fz0to4untppr |  |-  ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) | 
						
							| 18 | 17 | eleq2i |  |-  ( P e. ( 0 ... 4 ) <-> P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) | 
						
							| 19 |  | elun |  |-  ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) <-> ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) ) | 
						
							| 20 |  | eltpi |  |-  ( P e. { 0 , 1 , 2 } -> ( P = 0 \/ P = 1 \/ P = 2 ) ) | 
						
							| 21 |  | nnne0 |  |-  ( P e. NN -> P =/= 0 ) | 
						
							| 22 |  | eqneqall |  |-  ( P = 0 -> ( P =/= 0 -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 23 | 22 | com12 |  |-  ( P =/= 0 -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 24 | 1 21 23 | 3syl |  |-  ( P e. Prime -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 25 | 24 | com12 |  |-  ( P = 0 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 26 |  | eleq1 |  |-  ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) | 
						
							| 27 |  | 1nprm |  |-  -. 1 e. Prime | 
						
							| 28 | 27 | pm2.21i |  |-  ( 1 e. Prime -> ( P = 2 \/ P = 3 ) ) | 
						
							| 29 | 26 28 | biimtrdi |  |-  ( P = 1 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 30 |  | orc |  |-  ( P = 2 -> ( P = 2 \/ P = 3 ) ) | 
						
							| 31 | 30 | a1d |  |-  ( P = 2 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 32 | 25 29 31 | 3jaoi |  |-  ( ( P = 0 \/ P = 1 \/ P = 2 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 33 | 20 32 | syl |  |-  ( P e. { 0 , 1 , 2 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 34 |  | elpri |  |-  ( P e. { 3 , 4 } -> ( P = 3 \/ P = 4 ) ) | 
						
							| 35 |  | olc |  |-  ( P = 3 -> ( P = 2 \/ P = 3 ) ) | 
						
							| 36 | 35 | a1d |  |-  ( P = 3 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 37 |  | eleq1 |  |-  ( P = 4 -> ( P e. Prime <-> 4 e. Prime ) ) | 
						
							| 38 |  | 4nprm |  |-  -. 4 e. Prime | 
						
							| 39 | 38 | pm2.21i |  |-  ( 4 e. Prime -> ( P = 2 \/ P = 3 ) ) | 
						
							| 40 | 37 39 | biimtrdi |  |-  ( P = 4 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 41 | 36 40 | jaoi |  |-  ( ( P = 3 \/ P = 4 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 42 | 34 41 | syl |  |-  ( P e. { 3 , 4 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 43 | 33 42 | jaoi |  |-  ( ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 44 | 19 43 | sylbi |  |-  ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 45 | 44 | com12 |  |-  ( P e. Prime -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( P e. Prime /\ P < 5 ) -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 47 | 18 46 | biimtrid |  |-  ( ( P e. Prime /\ P < 5 ) -> ( P e. ( 0 ... 4 ) -> ( P = 2 \/ P = 3 ) ) ) | 
						
							| 48 | 16 47 | mpd |  |-  ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |