Step |
Hyp |
Ref |
Expression |
1 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
3z |
|- 3 e. ZZ |
4 |
|
0re |
|- 0 e. RR |
5 |
|
3re |
|- 3 e. RR |
6 |
|
3pos |
|- 0 < 3 |
7 |
4 5 6
|
ltleii |
|- 0 <_ 3 |
8 |
|
eluz2 |
|- ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) |
9 |
2 3 7 8
|
mpbir3an |
|- 3 e. ( ZZ>= ` 0 ) |
10 |
1 9
|
eqeltri |
|- ( 2 + 1 ) e. ( ZZ>= ` 0 ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
4z |
|- 4 e. ZZ |
13 |
|
2re |
|- 2 e. RR |
14 |
|
4re |
|- 4 e. RR |
15 |
|
2lt4 |
|- 2 < 4 |
16 |
13 14 15
|
ltleii |
|- 2 <_ 4 |
17 |
|
eluz2 |
|- ( 4 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 4 e. ZZ /\ 2 <_ 4 ) ) |
18 |
11 12 16 17
|
mpbir3an |
|- 4 e. ( ZZ>= ` 2 ) |
19 |
|
fzsplit2 |
|- ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 4 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) ) |
20 |
10 18 19
|
mp2an |
|- ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) |
21 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
22 |
1
|
oveq1i |
|- ( ( 2 + 1 ) ... 4 ) = ( 3 ... 4 ) |
23 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
24 |
23
|
oveq2i |
|- ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) |
25 |
|
fzpr |
|- ( 3 e. ZZ -> ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } ) |
26 |
3 25
|
ax-mp |
|- ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } |
27 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
28 |
27
|
preq2i |
|- { 3 , ( 3 + 1 ) } = { 3 , 4 } |
29 |
24 26 28
|
3eqtri |
|- ( 3 ... 4 ) = { 3 , 4 } |
30 |
22 29
|
eqtri |
|- ( ( 2 + 1 ) ... 4 ) = { 3 , 4 } |
31 |
21 30
|
uneq12i |
|- ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
32 |
20 31
|
eqtri |
|- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |