Step |
Hyp |
Ref |
Expression |
1 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
2 |
|
2cn |
⊢ 2 ∈ ℂ |
3 |
2
|
addid2i |
⊢ ( 0 + 2 ) = 2 |
4 |
3
|
eqcomi |
⊢ 2 = ( 0 + 2 ) |
5 |
4
|
oveq1i |
⊢ ( 2 + 1 ) = ( ( 0 + 2 ) + 1 ) |
6 |
1 5
|
eqtri |
⊢ 3 = ( ( 0 + 2 ) + 1 ) |
7 |
|
3z |
⊢ 3 ∈ ℤ |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
3re |
⊢ 3 ∈ ℝ |
10 |
|
3pos |
⊢ 0 < 3 |
11 |
8 9 10
|
ltleii |
⊢ 0 ≤ 3 |
12 |
|
0z |
⊢ 0 ∈ ℤ |
13 |
12
|
eluz1i |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 3 ∈ ℤ ∧ 0 ≤ 3 ) ) |
14 |
7 11 13
|
mpbir2an |
⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
15 |
6 14
|
eqeltrri |
⊢ ( ( 0 + 2 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) |
16 |
|
4z |
⊢ 4 ∈ ℤ |
17 |
|
2re |
⊢ 2 ∈ ℝ |
18 |
|
4re |
⊢ 4 ∈ ℝ |
19 |
|
2lt4 |
⊢ 2 < 4 |
20 |
17 18 19
|
ltleii |
⊢ 2 ≤ 4 |
21 |
|
2z |
⊢ 2 ∈ ℤ |
22 |
21
|
eluz1i |
⊢ ( 4 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 4 ∈ ℤ ∧ 2 ≤ 4 ) ) |
23 |
16 20 22
|
mpbir2an |
⊢ 4 ∈ ( ℤ≥ ‘ 2 ) |
24 |
4
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 0 + 2 ) ) |
25 |
23 24
|
eleqtri |
⊢ 4 ∈ ( ℤ≥ ‘ ( 0 + 2 ) ) |
26 |
|
fzsplit2 |
⊢ ( ( ( ( 0 + 2 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 4 ∈ ( ℤ≥ ‘ ( 0 + 2 ) ) ) → ( 0 ... 4 ) = ( ( 0 ... ( 0 + 2 ) ) ∪ ( ( ( 0 + 2 ) + 1 ) ... 4 ) ) ) |
27 |
15 25 26
|
mp2an |
⊢ ( 0 ... 4 ) = ( ( 0 ... ( 0 + 2 ) ) ∪ ( ( ( 0 + 2 ) + 1 ) ... 4 ) ) |
28 |
|
fztp |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
29 |
12 28
|
ax-mp |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
30 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
31 |
|
eqidd |
⊢ ( 1 ∈ ℂ → 0 = 0 ) |
32 |
|
addid2 |
⊢ ( 1 ∈ ℂ → ( 0 + 1 ) = 1 ) |
33 |
3
|
a1i |
⊢ ( 1 ∈ ℂ → ( 0 + 2 ) = 2 ) |
34 |
31 32 33
|
tpeq123d |
⊢ ( 1 ∈ ℂ → { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } ) |
35 |
30 34
|
ax-mp |
⊢ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } |
36 |
29 35
|
eqtri |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } |
37 |
3
|
a1i |
⊢ ( 3 ∈ ℤ → ( 0 + 2 ) = 2 ) |
38 |
37
|
oveq1d |
⊢ ( 3 ∈ ℤ → ( ( 0 + 2 ) + 1 ) = ( 2 + 1 ) ) |
39 |
38 1
|
eqtr4di |
⊢ ( 3 ∈ ℤ → ( ( 0 + 2 ) + 1 ) = 3 ) |
40 |
39
|
oveq1d |
⊢ ( 3 ∈ ℤ → ( ( ( 0 + 2 ) + 1 ) ... 4 ) = ( 3 ... 4 ) ) |
41 |
|
eqid |
⊢ 3 = 3 |
42 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
43 |
41 42
|
pm3.2i |
⊢ ( 3 = 3 ∧ 4 = ( 3 + 1 ) ) |
44 |
43
|
a1i |
⊢ ( 3 ∈ ℤ → ( 3 = 3 ∧ 4 = ( 3 + 1 ) ) ) |
45 |
|
3lt4 |
⊢ 3 < 4 |
46 |
9 18 45
|
ltleii |
⊢ 3 ≤ 4 |
47 |
7
|
eluz1i |
⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
48 |
16 46 47
|
mpbir2an |
⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
49 |
|
fzopth |
⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) → ( ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) ↔ ( 3 = 3 ∧ 4 = ( 3 + 1 ) ) ) ) |
50 |
48 49
|
ax-mp |
⊢ ( ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) ↔ ( 3 = 3 ∧ 4 = ( 3 + 1 ) ) ) |
51 |
44 50
|
sylibr |
⊢ ( 3 ∈ ℤ → ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) ) |
52 |
|
fzpr |
⊢ ( 3 ∈ ℤ → ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } ) |
53 |
51 52
|
eqtrd |
⊢ ( 3 ∈ ℤ → ( 3 ... 4 ) = { 3 , ( 3 + 1 ) } ) |
54 |
42
|
eqcomi |
⊢ ( 3 + 1 ) = 4 |
55 |
54
|
preq2i |
⊢ { 3 , ( 3 + 1 ) } = { 3 , 4 } |
56 |
53 55
|
eqtrdi |
⊢ ( 3 ∈ ℤ → ( 3 ... 4 ) = { 3 , 4 } ) |
57 |
40 56
|
eqtrd |
⊢ ( 3 ∈ ℤ → ( ( ( 0 + 2 ) + 1 ) ... 4 ) = { 3 , 4 } ) |
58 |
7 57
|
ax-mp |
⊢ ( ( ( 0 + 2 ) + 1 ) ... 4 ) = { 3 , 4 } |
59 |
36 58
|
uneq12i |
⊢ ( ( 0 ... ( 0 + 2 ) ) ∪ ( ( ( 0 + 2 ) + 1 ) ... 4 ) ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
60 |
27 59
|
eqtri |
⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |