Step |
Hyp |
Ref |
Expression |
1 |
|
cnegex |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
2 |
|
cnegex |
⊢ ( 𝑥 ∈ ℂ → ∃ 𝑦 ∈ ℂ ( 𝑥 + 𝑦 ) = 0 ) |
3 |
2
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ) → ∃ 𝑦 ∈ ℂ ( 𝑥 + 𝑦 ) = 0 ) |
4 |
|
0cn |
⊢ 0 ∈ ℂ |
5 |
|
addass |
⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 + 0 ) + 𝑦 ) = ( 0 + ( 0 + 𝑦 ) ) ) |
6 |
4 4 5
|
mp3an12 |
⊢ ( 𝑦 ∈ ℂ → ( ( 0 + 0 ) + 𝑦 ) = ( 0 + ( 0 + 𝑦 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) → ( ( 0 + 0 ) + 𝑦 ) = ( 0 + ( 0 + 𝑦 ) ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( ( 0 + 0 ) + 𝑦 ) = ( 0 + ( 0 + 𝑦 ) ) ) |
9 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
10 |
9
|
oveq1i |
⊢ ( ( 0 + 0 ) + 𝑦 ) = ( 0 + 𝑦 ) |
11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
12 |
|
simp2l |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → 𝑥 ∈ ℂ ) |
13 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → 𝑦 ∈ ℂ ) |
14 |
11 12 13
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( ( 𝐴 + 𝑥 ) + 𝑦 ) = ( 𝐴 + ( 𝑥 + 𝑦 ) ) ) |
15 |
|
simp2r |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 𝐴 + 𝑥 ) = 0 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( ( 𝐴 + 𝑥 ) + 𝑦 ) = ( 0 + 𝑦 ) ) |
17 |
|
simp3r |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 𝑥 + 𝑦 ) = 0 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 𝐴 + ( 𝑥 + 𝑦 ) ) = ( 𝐴 + 0 ) ) |
19 |
14 16 18
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 𝐴 + 0 ) = ( 0 + 𝑦 ) ) |
20 |
|
addid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
22 |
19 21
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 0 + 𝑦 ) = 𝐴 ) |
23 |
10 22
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( ( 0 + 0 ) + 𝑦 ) = 𝐴 ) |
24 |
22
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 0 + ( 0 + 𝑦 ) ) = ( 0 + 𝐴 ) ) |
25 |
8 23 24
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
26 |
25
|
3expia |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ) → ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 + 𝑦 ) = 0 ) → ( 0 + 𝐴 ) = 𝐴 ) ) |
27 |
26
|
expd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ) → ( 𝑦 ∈ ℂ → ( ( 𝑥 + 𝑦 ) = 0 → ( 0 + 𝐴 ) = 𝐴 ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ) → ( ∃ 𝑦 ∈ ℂ ( 𝑥 + 𝑦 ) = 0 → ( 0 + 𝐴 ) = 𝐴 ) ) |
29 |
3 28
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐴 + 𝑥 ) = 0 ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
30 |
1 29
|
rexlimddv |
⊢ ( 𝐴 ∈ ℂ → ( 0 + 𝐴 ) = 𝐴 ) |