Metamath Proof Explorer


Theorem eluz1i

Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005)

Ref Expression
Hypothesis eluz.1 𝑀 ∈ ℤ
Assertion eluz1i ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluz.1 𝑀 ∈ ℤ
2 eluz1 ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) ) )
3 1 2 ax-mp ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) )