| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 2 |
1
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ℕ0 ) |
| 4 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 5 |
4
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 4 ∈ ℕ0 ) |
| 6 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 7 |
6
|
breq2i |
⊢ ( 𝑃 < 5 ↔ 𝑃 < ( 4 + 1 ) ) |
| 8 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 9 |
|
4z |
⊢ 4 ∈ ℤ |
| 10 |
|
zleltp1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ≤ 4 ↔ 𝑃 < ( 4 + 1 ) ) ) |
| 12 |
11
|
biimprd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < ( 4 + 1 ) → 𝑃 ≤ 4 ) ) |
| 13 |
7 12
|
biimtrid |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 < 5 → 𝑃 ≤ 4 ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ≤ 4 ) |
| 15 |
|
elfz2nn0 |
⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ ( 𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 𝑃 ≤ 4 ) ) |
| 16 |
3 5 14 15
|
syl3anbrc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → 𝑃 ∈ ( 0 ... 4 ) ) |
| 17 |
|
fz0to4untppr |
⊢ ( 0 ... 4 ) = ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) |
| 18 |
17
|
eleq2i |
⊢ ( 𝑃 ∈ ( 0 ... 4 ) ↔ 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ) |
| 19 |
|
elun |
⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) ↔ ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) ) |
| 20 |
|
eltpi |
⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) ) |
| 21 |
|
nnne0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ≠ 0 ) |
| 22 |
|
eqneqall |
⊢ ( 𝑃 = 0 → ( 𝑃 ≠ 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝑃 ≠ 0 → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 24 |
1 21 23
|
3syl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 0 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 25 |
24
|
com12 |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 26 |
|
eleq1 |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
| 27 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
| 28 |
27
|
pm2.21i |
⊢ ( 1 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 29 |
26 28
|
biimtrdi |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 30 |
|
orc |
⊢ ( 𝑃 = 2 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 31 |
30
|
a1d |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 32 |
25 29 31
|
3jaoi |
⊢ ( ( 𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 33 |
20 32
|
syl |
⊢ ( 𝑃 ∈ { 0 , 1 , 2 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 34 |
|
elpri |
⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 = 3 ∨ 𝑃 = 4 ) ) |
| 35 |
|
olc |
⊢ ( 𝑃 = 3 → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 36 |
35
|
a1d |
⊢ ( 𝑃 = 3 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ ↔ 4 ∈ ℙ ) ) |
| 38 |
|
4nprm |
⊢ ¬ 4 ∈ ℙ |
| 39 |
38
|
pm2.21i |
⊢ ( 4 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |
| 40 |
37 39
|
biimtrdi |
⊢ ( 𝑃 = 4 → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 41 |
36 40
|
jaoi |
⊢ ( ( 𝑃 = 3 ∨ 𝑃 = 4 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 42 |
34 41
|
syl |
⊢ ( 𝑃 ∈ { 3 , 4 } → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 43 |
33 42
|
jaoi |
⊢ ( ( 𝑃 ∈ { 0 , 1 , 2 } ∨ 𝑃 ∈ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 44 |
19 43
|
sylbi |
⊢ ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 45 |
44
|
com12 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( { 0 , 1 , 2 } ∪ { 3 , 4 } ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 47 |
18 46
|
biimtrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 ∈ ( 0 ... 4 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) ) |
| 48 |
16 47
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 < 5 ) → ( 𝑃 = 2 ∨ 𝑃 = 3 ) ) |