Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
5 |
1 2 3
|
gausslemma2dlem1 |
|- ( ph -> ( ! ` H ) = prod_ k e. ( 1 ... H ) ( R ` k ) ) |
6 |
|
eldif |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ -. P e. { 2 } ) ) |
7 |
|
prm23ge5 |
|- ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) |
8 |
|
eleq1 |
|- ( P = 2 -> ( P e. { 2 } <-> 2 e. { 2 } ) ) |
9 |
8
|
notbid |
|- ( P = 2 -> ( -. P e. { 2 } <-> -. 2 e. { 2 } ) ) |
10 |
|
2ex |
|- 2 e. _V |
11 |
10
|
snid |
|- 2 e. { 2 } |
12 |
11
|
2a1i |
|- ( P = 2 -> ( prod_ k e. ( 1 ... H ) ( R ` k ) =/= ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) -> 2 e. { 2 } ) ) |
13 |
12
|
necon1bd |
|- ( P = 2 -> ( -. 2 e. { 2 } -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
14 |
13
|
a1dd |
|- ( P = 2 -> ( -. 2 e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
15 |
9 14
|
sylbid |
|- ( P = 2 -> ( -. P e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
16 |
|
3lt4 |
|- 3 < 4 |
17 |
|
breq1 |
|- ( P = 3 -> ( P < 4 <-> 3 < 4 ) ) |
18 |
16 17
|
mpbiri |
|- ( P = 3 -> P < 4 ) |
19 |
|
3nn0 |
|- 3 e. NN0 |
20 |
|
eleq1 |
|- ( P = 3 -> ( P e. NN0 <-> 3 e. NN0 ) ) |
21 |
19 20
|
mpbiri |
|- ( P = 3 -> P e. NN0 ) |
22 |
|
4nn |
|- 4 e. NN |
23 |
|
divfl0 |
|- ( ( P e. NN0 /\ 4 e. NN ) -> ( P < 4 <-> ( |_ ` ( P / 4 ) ) = 0 ) ) |
24 |
21 22 23
|
sylancl |
|- ( P = 3 -> ( P < 4 <-> ( |_ ` ( P / 4 ) ) = 0 ) ) |
25 |
18 24
|
mpbid |
|- ( P = 3 -> ( |_ ` ( P / 4 ) ) = 0 ) |
26 |
4 25
|
eqtrid |
|- ( P = 3 -> M = 0 ) |
27 |
|
oveq2 |
|- ( M = 0 -> ( 1 ... M ) = ( 1 ... 0 ) ) |
28 |
27
|
adantr |
|- ( ( M = 0 /\ ph ) -> ( 1 ... M ) = ( 1 ... 0 ) ) |
29 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
30 |
28 29
|
eqtrdi |
|- ( ( M = 0 /\ ph ) -> ( 1 ... M ) = (/) ) |
31 |
30
|
prodeq1d |
|- ( ( M = 0 /\ ph ) -> prod_ k e. ( 1 ... M ) ( R ` k ) = prod_ k e. (/) ( R ` k ) ) |
32 |
|
prod0 |
|- prod_ k e. (/) ( R ` k ) = 1 |
33 |
31 32
|
eqtrdi |
|- ( ( M = 0 /\ ph ) -> prod_ k e. ( 1 ... M ) ( R ` k ) = 1 ) |
34 |
|
oveq1 |
|- ( M = 0 -> ( M + 1 ) = ( 0 + 1 ) ) |
35 |
34
|
adantr |
|- ( ( M = 0 /\ ph ) -> ( M + 1 ) = ( 0 + 1 ) ) |
36 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
37 |
35 36
|
eqtrdi |
|- ( ( M = 0 /\ ph ) -> ( M + 1 ) = 1 ) |
38 |
37
|
oveq1d |
|- ( ( M = 0 /\ ph ) -> ( ( M + 1 ) ... H ) = ( 1 ... H ) ) |
39 |
38
|
prodeq1d |
|- ( ( M = 0 /\ ph ) -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) = prod_ k e. ( 1 ... H ) ( R ` k ) ) |
40 |
33 39
|
oveq12d |
|- ( ( M = 0 /\ ph ) -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) = ( 1 x. prod_ k e. ( 1 ... H ) ( R ` k ) ) ) |
41 |
|
fzfid |
|- ( ( M = 0 /\ ph ) -> ( 1 ... H ) e. Fin ) |
42 |
|
oveq1 |
|- ( x = k -> ( x x. 2 ) = ( k x. 2 ) ) |
43 |
42
|
breq1d |
|- ( x = k -> ( ( x x. 2 ) < ( P / 2 ) <-> ( k x. 2 ) < ( P / 2 ) ) ) |
44 |
42
|
oveq2d |
|- ( x = k -> ( P - ( x x. 2 ) ) = ( P - ( k x. 2 ) ) ) |
45 |
43 42 44
|
ifbieq12d |
|- ( x = k -> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) = if ( ( k x. 2 ) < ( P / 2 ) , ( k x. 2 ) , ( P - ( k x. 2 ) ) ) ) |
46 |
|
simpr |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> k e. ( 1 ... H ) ) |
47 |
|
elfzelz |
|- ( k e. ( 1 ... H ) -> k e. ZZ ) |
48 |
47
|
zcnd |
|- ( k e. ( 1 ... H ) -> k e. CC ) |
49 |
|
2cnd |
|- ( k e. ( 1 ... H ) -> 2 e. CC ) |
50 |
48 49
|
mulcld |
|- ( k e. ( 1 ... H ) -> ( k x. 2 ) e. CC ) |
51 |
50
|
adantl |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. CC ) |
52 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
53 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
54 |
53
|
zcnd |
|- ( P e. Prime -> P e. CC ) |
55 |
1 52 54
|
3syl |
|- ( ph -> P e. CC ) |
56 |
55
|
adantr |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> P e. CC ) |
57 |
56 51
|
subcld |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( P - ( k x. 2 ) ) e. CC ) |
58 |
51 57
|
ifcld |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> if ( ( k x. 2 ) < ( P / 2 ) , ( k x. 2 ) , ( P - ( k x. 2 ) ) ) e. CC ) |
59 |
3 45 46 58
|
fvmptd3 |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( R ` k ) = if ( ( k x. 2 ) < ( P / 2 ) , ( k x. 2 ) , ( P - ( k x. 2 ) ) ) ) |
60 |
59 58
|
eqeltrd |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( R ` k ) e. CC ) |
61 |
60
|
adantll |
|- ( ( ( M = 0 /\ ph ) /\ k e. ( 1 ... H ) ) -> ( R ` k ) e. CC ) |
62 |
41 61
|
fprodcl |
|- ( ( M = 0 /\ ph ) -> prod_ k e. ( 1 ... H ) ( R ` k ) e. CC ) |
63 |
62
|
mulid2d |
|- ( ( M = 0 /\ ph ) -> ( 1 x. prod_ k e. ( 1 ... H ) ( R ` k ) ) = prod_ k e. ( 1 ... H ) ( R ` k ) ) |
64 |
40 63
|
eqtr2d |
|- ( ( M = 0 /\ ph ) -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |
65 |
64
|
ex |
|- ( M = 0 -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
66 |
26 65
|
syl |
|- ( P = 3 -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
67 |
66
|
a1d |
|- ( P = 3 -> ( -. P e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
68 |
1 4
|
gausslemma2dlem0d |
|- ( ph -> M e. NN0 ) |
69 |
68
|
nn0red |
|- ( ph -> M e. RR ) |
70 |
69
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
71 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
72 |
70 71
|
syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
73 |
72
|
adantl |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
74 |
|
eluzelre |
|- ( P e. ( ZZ>= ` 5 ) -> P e. RR ) |
75 |
|
4re |
|- 4 e. RR |
76 |
75
|
a1i |
|- ( P e. ( ZZ>= ` 5 ) -> 4 e. RR ) |
77 |
|
4ne0 |
|- 4 =/= 0 |
78 |
77
|
a1i |
|- ( P e. ( ZZ>= ` 5 ) -> 4 =/= 0 ) |
79 |
74 76 78
|
redivcld |
|- ( P e. ( ZZ>= ` 5 ) -> ( P / 4 ) e. RR ) |
80 |
79
|
flcld |
|- ( P e. ( ZZ>= ` 5 ) -> ( |_ ` ( P / 4 ) ) e. ZZ ) |
81 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
82 |
22 81
|
ax-mp |
|- 4 e. RR+ |
83 |
|
eluz2 |
|- ( P e. ( ZZ>= ` 5 ) <-> ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) ) |
84 |
|
4lt5 |
|- 4 < 5 |
85 |
|
5re |
|- 5 e. RR |
86 |
85
|
a1i |
|- ( ( 5 e. ZZ /\ P e. ZZ ) -> 5 e. RR ) |
87 |
|
zre |
|- ( P e. ZZ -> P e. RR ) |
88 |
87
|
adantl |
|- ( ( 5 e. ZZ /\ P e. ZZ ) -> P e. RR ) |
89 |
|
ltleletr |
|- ( ( 4 e. RR /\ 5 e. RR /\ P e. RR ) -> ( ( 4 < 5 /\ 5 <_ P ) -> 4 <_ P ) ) |
90 |
75 86 88 89
|
mp3an2i |
|- ( ( 5 e. ZZ /\ P e. ZZ ) -> ( ( 4 < 5 /\ 5 <_ P ) -> 4 <_ P ) ) |
91 |
84 90
|
mpani |
|- ( ( 5 e. ZZ /\ P e. ZZ ) -> ( 5 <_ P -> 4 <_ P ) ) |
92 |
91
|
3impia |
|- ( ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) -> 4 <_ P ) |
93 |
83 92
|
sylbi |
|- ( P e. ( ZZ>= ` 5 ) -> 4 <_ P ) |
94 |
|
divge1 |
|- ( ( 4 e. RR+ /\ P e. RR /\ 4 <_ P ) -> 1 <_ ( P / 4 ) ) |
95 |
82 74 93 94
|
mp3an2i |
|- ( P e. ( ZZ>= ` 5 ) -> 1 <_ ( P / 4 ) ) |
96 |
|
1zzd |
|- ( P e. ( ZZ>= ` 5 ) -> 1 e. ZZ ) |
97 |
|
flge |
|- ( ( ( P / 4 ) e. RR /\ 1 e. ZZ ) -> ( 1 <_ ( P / 4 ) <-> 1 <_ ( |_ ` ( P / 4 ) ) ) ) |
98 |
79 96 97
|
syl2anc |
|- ( P e. ( ZZ>= ` 5 ) -> ( 1 <_ ( P / 4 ) <-> 1 <_ ( |_ ` ( P / 4 ) ) ) ) |
99 |
95 98
|
mpbid |
|- ( P e. ( ZZ>= ` 5 ) -> 1 <_ ( |_ ` ( P / 4 ) ) ) |
100 |
|
elnnz1 |
|- ( ( |_ ` ( P / 4 ) ) e. NN <-> ( ( |_ ` ( P / 4 ) ) e. ZZ /\ 1 <_ ( |_ ` ( P / 4 ) ) ) ) |
101 |
80 99 100
|
sylanbrc |
|- ( P e. ( ZZ>= ` 5 ) -> ( |_ ` ( P / 4 ) ) e. NN ) |
102 |
101
|
adantl |
|- ( ( P e. ( Prime \ { 2 } ) /\ P e. ( ZZ>= ` 5 ) ) -> ( |_ ` ( P / 4 ) ) e. NN ) |
103 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
104 |
103
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ P e. ( ZZ>= ` 5 ) ) -> ( ( P - 1 ) / 2 ) e. NN ) |
105 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
106 |
52 105
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) |
107 |
106
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ P e. ( ZZ>= ` 5 ) ) -> P e. ( ZZ>= ` 2 ) ) |
108 |
|
fldiv4lem1div2uz2 |
|- ( P e. ( ZZ>= ` 2 ) -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) |
109 |
107 108
|
syl |
|- ( ( P e. ( Prime \ { 2 } ) /\ P e. ( ZZ>= ` 5 ) ) -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) |
110 |
102 104 109
|
3jca |
|- ( ( P e. ( Prime \ { 2 } ) /\ P e. ( ZZ>= ` 5 ) ) -> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) |
111 |
110
|
ex |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. ( ZZ>= ` 5 ) -> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) ) |
112 |
1 111
|
syl |
|- ( ph -> ( P e. ( ZZ>= ` 5 ) -> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) ) |
113 |
112
|
impcom |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) |
114 |
2
|
oveq2i |
|- ( 1 ... H ) = ( 1 ... ( ( P - 1 ) / 2 ) ) |
115 |
4 114
|
eleq12i |
|- ( M e. ( 1 ... H ) <-> ( |_ ` ( P / 4 ) ) e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
116 |
|
elfz1b |
|- ( ( |_ ` ( P / 4 ) ) e. ( 1 ... ( ( P - 1 ) / 2 ) ) <-> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) |
117 |
115 116
|
bitri |
|- ( M e. ( 1 ... H ) <-> ( ( |_ ` ( P / 4 ) ) e. NN /\ ( ( P - 1 ) / 2 ) e. NN /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) |
118 |
113 117
|
sylibr |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> M e. ( 1 ... H ) ) |
119 |
|
fzsplit |
|- ( M e. ( 1 ... H ) -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
120 |
118 119
|
syl |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
121 |
|
fzfid |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> ( 1 ... H ) e. Fin ) |
122 |
60
|
adantll |
|- ( ( ( P e. ( ZZ>= ` 5 ) /\ ph ) /\ k e. ( 1 ... H ) ) -> ( R ` k ) e. CC ) |
123 |
73 120 121 122
|
fprodsplit |
|- ( ( P e. ( ZZ>= ` 5 ) /\ ph ) -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |
124 |
123
|
ex |
|- ( P e. ( ZZ>= ` 5 ) -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
125 |
124
|
a1d |
|- ( P e. ( ZZ>= ` 5 ) -> ( -. P e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
126 |
15 67 125
|
3jaoi |
|- ( ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( -. P e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
127 |
7 126
|
syl |
|- ( P e. Prime -> ( -. P e. { 2 } -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) ) |
128 |
127
|
imp |
|- ( ( P e. Prime /\ -. P e. { 2 } ) -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
129 |
6 128
|
sylbi |
|- ( P e. ( Prime \ { 2 } ) -> ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) ) |
130 |
1 129
|
mpcom |
|- ( ph -> prod_ k e. ( 1 ... H ) ( R ` k ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |
131 |
5 130
|
eqtrd |
|- ( ph -> ( ! ` H ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |