| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 2 |
|
gausslemma2d.h |
⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) |
| 3 |
|
gausslemma2d.r |
⊢ 𝑅 = ( 𝑥 ∈ ( 1 ... 𝐻 ) ↦ if ( ( 𝑥 · 2 ) < ( 𝑃 / 2 ) , ( 𝑥 · 2 ) , ( 𝑃 − ( 𝑥 · 2 ) ) ) ) |
| 4 |
|
gausslemma2d.m |
⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) |
| 5 |
1 2 3
|
gausslemma2dlem1 |
⊢ ( 𝜑 → ( ! ‘ 𝐻 ) = ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) |
| 6 |
|
eldif |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ { 2 } ) ) |
| 7 |
|
prm23ge5 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ { 2 } ↔ 2 ∈ { 2 } ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑃 = 2 → ( ¬ 𝑃 ∈ { 2 } ↔ ¬ 2 ∈ { 2 } ) ) |
| 10 |
|
2ex |
⊢ 2 ∈ V |
| 11 |
10
|
snid |
⊢ 2 ∈ { 2 } |
| 12 |
11
|
2a1i |
⊢ ( 𝑃 = 2 → ( ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ≠ ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) → 2 ∈ { 2 } ) ) |
| 13 |
12
|
necon1bd |
⊢ ( 𝑃 = 2 → ( ¬ 2 ∈ { 2 } → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 14 |
13
|
a1dd |
⊢ ( 𝑃 = 2 → ( ¬ 2 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 15 |
9 14
|
sylbid |
⊢ ( 𝑃 = 2 → ( ¬ 𝑃 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 16 |
|
3lt4 |
⊢ 3 < 4 |
| 17 |
|
breq1 |
⊢ ( 𝑃 = 3 → ( 𝑃 < 4 ↔ 3 < 4 ) ) |
| 18 |
16 17
|
mpbiri |
⊢ ( 𝑃 = 3 → 𝑃 < 4 ) |
| 19 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 20 |
|
eleq1 |
⊢ ( 𝑃 = 3 → ( 𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0 ) ) |
| 21 |
19 20
|
mpbiri |
⊢ ( 𝑃 = 3 → 𝑃 ∈ ℕ0 ) |
| 22 |
|
4nn |
⊢ 4 ∈ ℕ |
| 23 |
|
divfl0 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 𝑃 < 4 ↔ ( ⌊ ‘ ( 𝑃 / 4 ) ) = 0 ) ) |
| 24 |
21 22 23
|
sylancl |
⊢ ( 𝑃 = 3 → ( 𝑃 < 4 ↔ ( ⌊ ‘ ( 𝑃 / 4 ) ) = 0 ) ) |
| 25 |
18 24
|
mpbid |
⊢ ( 𝑃 = 3 → ( ⌊ ‘ ( 𝑃 / 4 ) ) = 0 ) |
| 26 |
4 25
|
eqtrid |
⊢ ( 𝑃 = 3 → 𝑀 = 0 ) |
| 27 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( 1 ... 𝑀 ) = ( 1 ... 0 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 1 ... 𝑀 ) = ( 1 ... 0 ) ) |
| 29 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 30 |
28 29
|
eqtrdi |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 1 ... 𝑀 ) = ∅ ) |
| 31 |
30
|
prodeq1d |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) = ∏ 𝑘 ∈ ∅ ( 𝑅 ‘ 𝑘 ) ) |
| 32 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( 𝑅 ‘ 𝑘 ) = 1 |
| 33 |
31 32
|
eqtrdi |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) = 1 ) |
| 34 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 + 1 ) = ( 0 + 1 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 𝑀 + 1 ) = ( 0 + 1 ) ) |
| 36 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 37 |
35 36
|
eqtrdi |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 𝑀 + 1 ) = 1 ) |
| 38 |
37
|
oveq1d |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( ( 𝑀 + 1 ) ... 𝐻 ) = ( 1 ... 𝐻 ) ) |
| 39 |
38
|
prodeq1d |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) |
| 40 |
33 39
|
oveq12d |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) = ( 1 · ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |
| 41 |
|
fzfid |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 1 ... 𝐻 ) ∈ Fin ) |
| 42 |
|
oveq1 |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 · 2 ) = ( 𝑘 · 2 ) ) |
| 43 |
42
|
breq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑥 · 2 ) < ( 𝑃 / 2 ) ↔ ( 𝑘 · 2 ) < ( 𝑃 / 2 ) ) ) |
| 44 |
42
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 − ( 𝑥 · 2 ) ) = ( 𝑃 − ( 𝑘 · 2 ) ) ) |
| 45 |
43 42 44
|
ifbieq12d |
⊢ ( 𝑥 = 𝑘 → if ( ( 𝑥 · 2 ) < ( 𝑃 / 2 ) , ( 𝑥 · 2 ) , ( 𝑃 − ( 𝑥 · 2 ) ) ) = if ( ( 𝑘 · 2 ) < ( 𝑃 / 2 ) , ( 𝑘 · 2 ) , ( 𝑃 − ( 𝑘 · 2 ) ) ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → 𝑘 ∈ ( 1 ... 𝐻 ) ) |
| 47 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝐻 ) → 𝑘 ∈ ℤ ) |
| 48 |
47
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐻 ) → 𝑘 ∈ ℂ ) |
| 49 |
|
2cnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐻 ) → 2 ∈ ℂ ) |
| 50 |
48 49
|
mulcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝐻 ) → ( 𝑘 · 2 ) ∈ ℂ ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑘 · 2 ) ∈ ℂ ) |
| 52 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 53 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 54 |
53
|
zcnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 55 |
1 52 54
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → 𝑃 ∈ ℂ ) |
| 57 |
56 51
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑃 − ( 𝑘 · 2 ) ) ∈ ℂ ) |
| 58 |
51 57
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → if ( ( 𝑘 · 2 ) < ( 𝑃 / 2 ) , ( 𝑘 · 2 ) , ( 𝑃 − ( 𝑘 · 2 ) ) ) ∈ ℂ ) |
| 59 |
3 45 46 58
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑅 ‘ 𝑘 ) = if ( ( 𝑘 · 2 ) < ( 𝑃 / 2 ) , ( 𝑘 · 2 ) , ( 𝑃 − ( 𝑘 · 2 ) ) ) ) |
| 60 |
59 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑅 ‘ 𝑘 ) ∈ ℂ ) |
| 61 |
60
|
adantll |
⊢ ( ( ( 𝑀 = 0 ∧ 𝜑 ) ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑅 ‘ 𝑘 ) ∈ ℂ ) |
| 62 |
41 61
|
fprodcl |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ∈ ℂ ) |
| 63 |
62
|
mullidd |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ( 1 · ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) |
| 64 |
40 63
|
eqtr2d |
⊢ ( ( 𝑀 = 0 ∧ 𝜑 ) → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |
| 65 |
64
|
ex |
⊢ ( 𝑀 = 0 → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 66 |
26 65
|
syl |
⊢ ( 𝑃 = 3 → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 67 |
66
|
a1d |
⊢ ( 𝑃 = 3 → ( ¬ 𝑃 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 68 |
1 4
|
gausslemma2dlem0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 69 |
68
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 70 |
69
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 71 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝐻 ) ) = ∅ ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝐻 ) ) = ∅ ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝐻 ) ) = ∅ ) |
| 74 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 𝑃 ∈ ℝ ) |
| 75 |
|
4re |
⊢ 4 ∈ ℝ |
| 76 |
75
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 4 ∈ ℝ ) |
| 77 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 78 |
77
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 4 ≠ 0 ) |
| 79 |
74 76 78
|
redivcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑃 / 4 ) ∈ ℝ ) |
| 80 |
79
|
flcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℤ ) |
| 81 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
| 82 |
22 81
|
ax-mp |
⊢ 4 ∈ ℝ+ |
| 83 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) ) |
| 84 |
|
4lt5 |
⊢ 4 < 5 |
| 85 |
|
5re |
⊢ 5 ∈ ℝ |
| 86 |
85
|
a1i |
⊢ ( ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 5 ∈ ℝ ) |
| 87 |
|
zre |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∈ ℝ ) |
| 88 |
87
|
adantl |
⊢ ( ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∈ ℝ ) |
| 89 |
|
ltleletr |
⊢ ( ( 4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 4 < 5 ∧ 5 ≤ 𝑃 ) → 4 ≤ 𝑃 ) ) |
| 90 |
75 86 88 89
|
mp3an2i |
⊢ ( ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 4 < 5 ∧ 5 ≤ 𝑃 ) → 4 ≤ 𝑃 ) ) |
| 91 |
84 90
|
mpani |
⊢ ( ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 5 ≤ 𝑃 → 4 ≤ 𝑃 ) ) |
| 92 |
91
|
3impia |
⊢ ( ( 5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃 ) → 4 ≤ 𝑃 ) |
| 93 |
83 92
|
sylbi |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 4 ≤ 𝑃 ) |
| 94 |
|
divge1 |
⊢ ( ( 4 ∈ ℝ+ ∧ 𝑃 ∈ ℝ ∧ 4 ≤ 𝑃 ) → 1 ≤ ( 𝑃 / 4 ) ) |
| 95 |
82 74 93 94
|
mp3an2i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 1 ≤ ( 𝑃 / 4 ) ) |
| 96 |
|
1zzd |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 1 ∈ ℤ ) |
| 97 |
|
flge |
⊢ ( ( ( 𝑃 / 4 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ ( 𝑃 / 4 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑃 / 4 ) ) ) ) |
| 98 |
79 96 97
|
syl2anc |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 1 ≤ ( 𝑃 / 4 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑃 / 4 ) ) ) ) |
| 99 |
95 98
|
mpbid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → 1 ≤ ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
| 100 |
|
elnnz1 |
⊢ ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℤ ∧ 1 ≤ ( ⌊ ‘ ( 𝑃 / 4 ) ) ) ) |
| 101 |
80 99 100
|
sylanbrc |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ) |
| 103 |
|
oddprm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 105 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 106 |
52 105
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 108 |
|
fldiv4lem1div2uz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
| 109 |
107 108
|
syl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
| 110 |
102 104 109
|
3jca |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 111 |
110
|
ex |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
| 112 |
1 111
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
| 113 |
112
|
impcom |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 114 |
2
|
oveq2i |
⊢ ( 1 ... 𝐻 ) = ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) |
| 115 |
4 114
|
eleq12i |
⊢ ( 𝑀 ∈ ( 1 ... 𝐻 ) ↔ ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 116 |
|
elfz1b |
⊢ ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↔ ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 117 |
115 116
|
bitri |
⊢ ( 𝑀 ∈ ( 1 ... 𝐻 ) ↔ ( ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℕ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 118 |
113 117
|
sylibr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → 𝑀 ∈ ( 1 ... 𝐻 ) ) |
| 119 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( 1 ... 𝐻 ) → ( 1 ... 𝐻 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝐻 ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → ( 1 ... 𝐻 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝐻 ) ) ) |
| 121 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → ( 1 ... 𝐻 ) ∈ Fin ) |
| 122 |
60
|
adantll |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 1 ... 𝐻 ) ) → ( 𝑅 ‘ 𝑘 ) ∈ ℂ ) |
| 123 |
73 120 121 122
|
fprodsplit |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝜑 ) → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |
| 124 |
123
|
ex |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 125 |
124
|
a1d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 5 ) → ( ¬ 𝑃 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 126 |
15 67 125
|
3jaoi |
⊢ ( ( 𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ ( ℤ≥ ‘ 5 ) ) → ( ¬ 𝑃 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 127 |
7 126
|
syl |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 ∈ { 2 } → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 128 |
127
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ { 2 } ) → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 129 |
6 128
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 130 |
1 129
|
mpcom |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |
| 131 |
5 130
|
eqtrd |
⊢ ( 𝜑 → ( ! ‘ 𝐻 ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 ) · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |