| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 | 1 2 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) | 
						
							| 5 | 4 | nnnn0d | ⊢ ( 𝜑  →  𝐻  ∈  ℕ0 ) | 
						
							| 6 |  | fprodfac | ⊢ ( 𝐻  ∈  ℕ0  →  ( ! ‘ 𝐻 )  =  ∏ 𝑙  ∈  ( 1 ... 𝐻 ) 𝑙 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ∏ 𝑙  ∈  ( 1 ... 𝐻 ) 𝑙 ) | 
						
							| 8 |  | id | ⊢ ( 𝑙  =  ( 𝑅 ‘ 𝑘 )  →  𝑙  =  ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 9 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝐻 )  ∈  Fin ) | 
						
							| 10 |  | fzfi | ⊢ ( 1 ... 𝐻 )  ∈  Fin | 
						
							| 11 |  | ovex | ⊢ ( 𝑥  ·  2 )  ∈  V | 
						
							| 12 |  | ovex | ⊢ ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  V | 
						
							| 13 | 11 12 | ifex | ⊢ if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ∈  V | 
						
							| 14 | 13 3 | fnmpti | ⊢ 𝑅  Fn  ( 1 ... 𝐻 ) | 
						
							| 15 | 1 2 3 | gausslemma2dlem1a | ⊢ ( 𝜑  →  ran  𝑅  =  ( 1 ... 𝐻 ) ) | 
						
							| 16 |  | rneqdmfinf1o | ⊢ ( ( ( 1 ... 𝐻 )  ∈  Fin  ∧  𝑅  Fn  ( 1 ... 𝐻 )  ∧  ran  𝑅  =  ( 1 ... 𝐻 ) )  →  𝑅 : ( 1 ... 𝐻 ) –1-1-onto→ ( 1 ... 𝐻 ) ) | 
						
							| 17 | 10 14 15 16 | mp3an12i | ⊢ ( 𝜑  →  𝑅 : ( 1 ... 𝐻 ) –1-1-onto→ ( 1 ... 𝐻 ) ) | 
						
							| 18 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 19 |  | elfzelz | ⊢ ( 𝑙  ∈  ( 1 ... 𝐻 )  →  𝑙  ∈  ℤ ) | 
						
							| 20 | 19 | zcnd | ⊢ ( 𝑙  ∈  ( 1 ... 𝐻 )  →  𝑙  ∈  ℂ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ( 1 ... 𝐻 ) )  →  𝑙  ∈  ℂ ) | 
						
							| 22 | 8 9 17 18 21 | fprodf1o | ⊢ ( 𝜑  →  ∏ 𝑙  ∈  ( 1 ... 𝐻 ) 𝑙  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 23 | 7 22 | eqtrd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) |