| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 | 3 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  𝑅  ↔  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) ) | 
						
							| 5 | 4 | elv | ⊢ ( 𝑦  ∈  ran  𝑅  ↔  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 6 |  | iftrue | ⊢ ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  ( 𝑥  ·  2 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  ( 𝑥  ·  2 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  ( 𝑥  ·  2 ) ) ) | 
						
							| 9 |  | elfz1b | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  ↔  ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℕ ) | 
						
							| 11 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 13 | 10 12 | nnmulcld | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑥  ·  2 )  ∈  ℕ ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑥  ·  2 )  ∈  ℕ ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑  ∧  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) )  →  ( 𝑥  ·  2 )  ∈  ℕ ) | 
						
							| 16 | 2 | eleq1i | ⊢ ( 𝐻  ∈  ℕ  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 17 | 16 | biimpi | ⊢ ( 𝐻  ∈  ℕ  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑  ∧  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 20 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 21 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 22 | 21 | anim1i | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 23 | 20 22 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 24 |  | nnz | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℤ ) | 
						
							| 25 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 27 | 24 26 | zmulcld | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑥  ·  2 )  ∈  ℤ ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑥  ·  2 )  ∈  ℤ ) | 
						
							| 29 | 23 28 | anim12i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 ) )  →  ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 30 |  | df-3an | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ )  ↔  ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 ) )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 35 |  | ltoddhalfle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ )  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑 )  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 37 | 36 | biimp3a | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑  ∧  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) )  →  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 38 | 15 19 37 | 3jca | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  ∧  𝜑  ∧  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) )  →  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 39 | 38 | 3exp | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝜑  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) ) ) | 
						
							| 40 | 9 39 | sylbi | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( 𝜑  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) ) ) | 
						
							| 41 | 40 | impcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 42 | 41 | impcom | ⊢ ( ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 43 | 2 | oveq2i | ⊢ ( 1 ... 𝐻 )  =  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 44 | 43 | eleq2i | ⊢ ( ( 𝑥  ·  2 )  ∈  ( 1 ... 𝐻 )  ↔  ( 𝑥  ·  2 )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 45 |  | elfz1b | ⊢ ( ( 𝑥  ·  2 )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↔  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 46 | 44 45 | bitri | ⊢ ( ( 𝑥  ·  2 )  ∈  ( 1 ... 𝐻 )  ↔  ( ( 𝑥  ·  2 )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( 𝑥  ·  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 47 | 42 46 | sylibr | ⊢ ( ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑥  ·  2 )  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 48 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑥  ·  2 )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  ↔  ( 𝑥  ·  2 )  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 49 | 47 48 | syl5ibrcom | ⊢ ( ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  ( 𝑥  ·  2 )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 50 | 8 49 | sylbid | ⊢ ( ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 54 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 55 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 56 | 1 54 55 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  𝑃  ∈  ℤ ) | 
						
							| 58 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  𝑥  ∈  ℤ ) | 
						
							| 59 | 25 | a1i | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  2  ∈  ℤ ) | 
						
							| 60 | 58 59 | zmulcld | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( 𝑥  ·  2 )  ∈  ℤ ) | 
						
							| 61 | 60 | ad2antll | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑥  ·  2 )  ∈  ℤ ) | 
						
							| 62 | 57 61 | zsubcld | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ ) | 
						
							| 63 | 55 | zred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 64 | 2 | breq2i | ⊢ ( 𝑥  ≤  𝐻  ↔  𝑥  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 65 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 67 |  | peano2rem | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 69 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 70 |  | 2pos | ⊢ 0  <  2 | 
						
							| 71 | 69 70 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 72 | 71 | a1i | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 73 |  | lemuldiv | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 𝑃  −  1 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑥  ·  2 )  ≤  ( 𝑃  −  1 )  ↔  𝑥  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 74 | 66 68 72 73 | syl3anc | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑥  ·  2 )  ≤  ( 𝑃  −  1 )  ↔  𝑥  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 75 | 64 74 | bitr4id | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 𝑥  ≤  𝐻  ↔  ( 𝑥  ·  2 )  ≤  ( 𝑃  −  1 ) ) ) | 
						
							| 76 | 13 | nnred | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑥  ·  2 )  ∈  ℝ ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 𝑥  ·  2 )  ∈  ℝ ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  𝑃  ∈  ℝ ) | 
						
							| 79 | 77 68 78 | lesub2d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑥  ·  2 )  ≤  ( 𝑃  −  1 )  ↔  ( 𝑃  −  ( 𝑃  −  1 ) )  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 80 |  | recn | ⊢ ( 𝑃  ∈  ℝ  →  𝑃  ∈  ℂ ) | 
						
							| 81 |  | 1cnd | ⊢ ( 𝑃  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 82 | 80 81 | nncand | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  ( 𝑃  −  1 ) )  =  1 ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  −  ( 𝑃  −  1 ) )  =  1 ) | 
						
							| 84 | 83 | breq1d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  −  ( 𝑃  −  1 ) )  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) )  ↔  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 85 | 84 | biimpd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  −  ( 𝑃  −  1 ) )  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 86 | 79 85 | sylbid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑥  ·  2 )  ≤  ( 𝑃  −  1 )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 87 | 75 86 | sylbid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑃  ∈  ℝ )  →  ( 𝑥  ≤  𝐻  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 88 | 87 | impancom | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑃  ∈  ℝ  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 89 | 88 | 3adant2 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑥  ≤  𝐻 )  →  ( 𝑃  ∈  ℝ  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 90 | 9 89 | sylbi | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( 𝑃  ∈  ℝ  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 91 | 90 | com12 | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑥  ∈  ( 1 ... 𝐻 )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 92 | 1 54 63 91 | 4syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 ... 𝐻 )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 93 | 92 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) | 
						
							| 95 |  | elnnz1 | ⊢ ( ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℕ  ↔  ( ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ  ∧  1  ≤  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 96 | 62 94 95 | sylanbrc | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℕ ) | 
						
							| 97 | 9 | simp2bi | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  𝐻  ∈  ℕ ) | 
						
							| 98 | 97 | ad2antll | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  𝐻  ∈  ℕ ) | 
						
							| 99 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 100 | 99 | rehalfcld | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 102 | 60 | zred | ⊢ ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( 𝑥  ·  2 )  ∈  ℝ ) | 
						
							| 103 |  | lenlt | ⊢ ( ( ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑥  ·  2 )  ∈  ℝ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  ↔  ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 104 | 101 102 103 | syl2an | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  ↔  ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 105 | 22 60 | anim12i | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 106 | 105 30 | sylibr | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ ) ) | 
						
							| 107 |  | halfleoddlt | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑥  ·  2 )  ∈  ℤ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  ↔  ( 𝑃  /  2 )  <  ( 𝑥  ·  2 ) ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  ↔  ( 𝑃  /  2 )  <  ( 𝑥  ·  2 ) ) ) | 
						
							| 109 | 108 | biimpa | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  /  2 )  <  ( 𝑥  ·  2 ) ) | 
						
							| 110 |  | nncn | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℂ ) | 
						
							| 111 |  | subhalfhalf | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 113 | 112 | breq1d | ⊢ ( 𝑃  ∈  ℕ  →  ( ( 𝑃  −  ( 𝑃  /  2 ) )  <  ( 𝑥  ·  2 )  ↔  ( 𝑃  /  2 )  <  ( 𝑥  ·  2 ) ) ) | 
						
							| 114 | 113 | ad3antrrr | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( ( 𝑃  −  ( 𝑃  /  2 ) )  <  ( 𝑥  ·  2 )  ↔  ( 𝑃  /  2 )  <  ( 𝑥  ·  2 ) ) ) | 
						
							| 115 | 109 114 | mpbird | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  −  ( 𝑃  /  2 ) )  <  ( 𝑥  ·  2 ) ) | 
						
							| 116 | 99 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 117 | 100 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 118 | 102 | adantl | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑥  ·  2 )  ∈  ℝ ) | 
						
							| 119 | 116 117 118 | 3jca | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  ∈  ℝ  ∧  ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑥  ·  2 )  ∈  ℝ ) ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  ∈  ℝ  ∧  ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑥  ·  2 )  ∈  ℝ ) ) | 
						
							| 121 |  | ltsub23 | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑥  ·  2 )  ∈  ℝ )  →  ( ( 𝑃  −  ( 𝑃  /  2 ) )  <  ( 𝑥  ·  2 )  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 122 | 120 121 | syl | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( ( 𝑃  −  ( 𝑃  /  2 ) )  <  ( 𝑥  ·  2 )  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 123 | 115 122 | mpbid | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  <  ( 𝑃  /  2 ) ) | 
						
							| 124 | 21 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 125 |  | simplr | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ¬  2  ∥  𝑃 ) | 
						
							| 126 | 60 | adantl | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑥  ·  2 )  ∈  ℤ ) | 
						
							| 127 | 124 126 | zsubcld | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ ) | 
						
							| 128 | 124 125 127 | 3jca | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ ) ) | 
						
							| 130 |  | ltoddhalfle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℤ )  →  ( ( 𝑃  −  ( 𝑥  ·  2 ) )  <  ( 𝑃  /  2 )  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 131 | 129 130 | syl | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( ( 𝑃  −  ( 𝑥  ·  2 ) )  <  ( 𝑃  /  2 )  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 132 | 123 131 | mpbid | ⊢ ( ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  ∧  ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 133 | 132 | ex | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 134 | 2 | breq2i | ⊢ ( ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 135 | 133 134 | imbitrrdi | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑥  ·  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) | 
						
							| 136 | 104 135 | sylbird | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) | 
						
							| 137 | 136 | ex | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) ) | 
						
							| 138 | 1 20 137 | 3syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 ... 𝐻 )  →  ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) ) | 
						
							| 139 | 138 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) | 
						
							| 140 | 139 | impcom | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) | 
						
							| 141 |  | elfz1b | ⊢ ( ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ( 1 ... 𝐻 )  ↔  ( ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑃  −  ( 𝑥  ·  2 ) )  ≤  𝐻 ) ) | 
						
							| 142 | 96 98 140 141 | syl3anbrc | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 143 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑃  −  ( 𝑥  ·  2 ) )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  ↔  ( 𝑃  −  ( 𝑥  ·  2 ) )  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 144 | 142 143 | syl5ibrcom | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  ( 𝑃  −  ( 𝑥  ·  2 ) )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 145 | 53 144 | sylbid | ⊢ ( ( ¬  ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ∧  ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 146 | 50 145 | pm2.61ian | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 147 | 146 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  →  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 148 |  | elfz1b | ⊢ ( 𝑦  ∈  ( 1 ... 𝐻 )  ↔  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) ) | 
						
							| 149 |  | simp1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  𝑦  ∈  ℕ ) | 
						
							| 150 |  | simpl | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑 )  →  2  ∥  𝑦 ) | 
						
							| 151 |  | nnehalf | ⊢ ( ( 𝑦  ∈  ℕ  ∧  2  ∥  𝑦 )  →  ( 𝑦  /  2 )  ∈  ℕ ) | 
						
							| 152 | 149 150 151 | syl2anr | ⊢ ( ( ( 2  ∥  𝑦  ∧  𝜑 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑦  /  2 )  ∈  ℕ ) | 
						
							| 153 |  | simpr2 | ⊢ ( ( ( 2  ∥  𝑦  ∧  𝜑 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝐻  ∈  ℕ ) | 
						
							| 154 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 155 | 154 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 156 |  | nnrp | ⊢ ( 𝐻  ∈  ℕ  →  𝐻  ∈  ℝ+ ) | 
						
							| 157 | 156 | adantl | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  𝐻  ∈  ℝ+ ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  𝐻  ∈  ℝ+ ) | 
						
							| 159 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 160 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 161 | 159 160 | pm3.2i | ⊢ ( 2  ∈  ℝ+  ∧  1  ≤  2 ) | 
						
							| 162 | 161 | a1i | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  ( 2  ∈  ℝ+  ∧  1  ≤  2 ) ) | 
						
							| 163 |  | ledivge1le | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐻  ∈  ℝ+  ∧  ( 2  ∈  ℝ+  ∧  1  ≤  2 ) )  →  ( 𝑦  ≤  𝐻  →  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 164 | 155 158 162 163 | syl3anc | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  ( 𝑦  ≤  𝐻  →  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 165 | 164 | ex | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ≤  𝐻  →  ( 𝑦  /  2 )  ≤  𝐻 ) ) ) | 
						
							| 166 | 165 | com23 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ≤  𝐻  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  /  2 )  ≤  𝐻 ) ) ) | 
						
							| 167 | 166 | 3impia | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 168 | 167 | impcom | ⊢ ( ( ( 2  ∥  𝑦  ∧  𝜑 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑦  /  2 )  ≤  𝐻 ) | 
						
							| 169 | 152 153 168 | 3jca | ⊢ ( ( ( 2  ∥  𝑦  ∧  𝜑 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( 𝑦  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 170 | 169 | ex | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( 𝑦  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑦  /  2 )  ≤  𝐻 ) ) ) | 
						
							| 171 | 148 170 | biimtrid | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ( ( 𝑦  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑦  /  2 )  ≤  𝐻 ) ) ) | 
						
							| 172 | 171 | 3impia | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑦  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 173 |  | elfz1b | ⊢ ( ( 𝑦  /  2 )  ∈  ( 1 ... 𝐻 )  ↔  ( ( 𝑦  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( 𝑦  /  2 )  ≤  𝐻 ) ) | 
						
							| 174 | 172 173 | sylibr | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑦  /  2 )  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 175 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  /  2 )  →  ( 𝑥  ·  2 )  =  ( ( 𝑦  /  2 )  ·  2 ) ) | 
						
							| 176 | 175 | breq1d | ⊢ ( 𝑥  =  ( 𝑦  /  2 )  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 177 | 175 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  =  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) ) | 
						
							| 178 | 176 175 177 | ifbieq12d | ⊢ ( 𝑥  =  ( 𝑦  /  2 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  if ( ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( 𝑦  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) ) ) | 
						
							| 179 | 178 | eqeq2d | ⊢ ( 𝑥  =  ( 𝑦  /  2 )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  if ( ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( 𝑦  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) ) ) ) | 
						
							| 180 | 179 | adantl | ⊢ ( ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  ∧  𝑥  =  ( 𝑦  /  2 ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  if ( ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( 𝑦  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) ) ) ) | 
						
							| 181 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 1 ... 𝐻 )  →  𝑦  ∈  ℤ ) | 
						
							| 182 | 181 | zcnd | ⊢ ( 𝑦  ∈  ( 1 ... 𝐻 )  →  𝑦  ∈  ℂ ) | 
						
							| 183 | 182 | 3ad2ant3 | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 184 |  | 2cnd | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  2  ∈  ℂ ) | 
						
							| 185 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 186 | 185 | a1i | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  2  ≠  0 ) | 
						
							| 187 | 183 184 186 | divcan1d | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑦  /  2 )  ·  2 )  =  𝑦 ) | 
						
							| 188 | 2 | breq2i | ⊢ ( 𝑦  ≤  𝐻  ↔  𝑦  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 189 |  | nnz | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ ) | 
						
							| 190 | 1 20 22 | 3syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 191 | 190 | adantl | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 192 | 189 191 | anim12ci | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑦  ∈  ℤ ) ) | 
						
							| 193 |  | df-3an | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  𝑦  ∈  ℤ )  ↔  ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  𝑦  ∈  ℤ ) ) | 
						
							| 194 | 192 193 | sylibr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  𝑦  ∈  ℤ ) ) | 
						
							| 195 |  | ltoddhalfle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃  ∧  𝑦  ∈  ℤ )  →  ( 𝑦  <  ( 𝑃  /  2 )  ↔  𝑦  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 196 | 194 195 | syl | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( 2  ∥  𝑦  ∧  𝜑 ) )  →  ( 𝑦  <  ( 𝑃  /  2 )  ↔  𝑦  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 197 | 196 | exbiri | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 198 | 197 | com23 | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 199 | 188 198 | biimtrid | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  ≤  𝐻  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 200 | 199 | a1d | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝐻  ∈  ℕ  →  ( 𝑦  ≤  𝐻  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) ) ) | 
						
							| 201 | 200 | 3imp | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) | 
						
							| 202 | 148 201 | sylbi | ⊢ ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ( ( 2  ∥  𝑦  ∧  𝜑 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) | 
						
							| 203 | 202 | com12 | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  𝑦  <  ( 𝑃  /  2 ) ) ) | 
						
							| 204 | 203 | 3impia | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑦  <  ( 𝑃  /  2 ) ) | 
						
							| 205 | 187 204 | eqbrtrd | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 206 | 205 | iftrued | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  if ( ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( 𝑦  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) )  =  ( ( 𝑦  /  2 )  ·  2 ) ) | 
						
							| 207 | 206 187 | eqtr2d | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑦  =  if ( ( ( 𝑦  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( 𝑦  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( 𝑦  /  2 )  ·  2 ) ) ) ) | 
						
							| 208 | 174 180 207 | rspcedvd | ⊢ ( ( 2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 209 | 208 | 3exp | ⊢ ( 2  ∥  𝑦  →  ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) ) ) | 
						
							| 210 | 54 55 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℤ ) | 
						
							| 211 | 210 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 212 | 189 | 3ad2ant1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  𝑦  ∈  ℤ ) | 
						
							| 213 | 212 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 214 | 211 213 | zsubcld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑃  −  𝑦 )  ∈  ℤ ) | 
						
							| 215 | 154 | ad2antrl | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 216 | 67 | rehalfcld | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ ) | 
						
							| 217 | 216 | adantr | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ ) )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ ) | 
						
							| 218 |  | simpl | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ ) )  →  𝑃  ∈  ℝ ) | 
						
							| 219 | 215 217 218 | 3jca | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ ) )  →  ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ ) ) | 
						
							| 220 | 219 | ex | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ ) ) ) | 
						
							| 221 | 54 63 220 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ ) ) ) | 
						
							| 222 | 221 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ ) ) ) | 
						
							| 223 | 222 | impcom | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ ) ) | 
						
							| 224 |  | lesub2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  ↔  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  ≤  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 225 | 223 224 | syl | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  ↔  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  ≤  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 226 | 55 | zcnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 227 |  | 1cnd | ⊢ ( 𝑃  ∈  ℂ  →  1  ∈  ℂ ) | 
						
							| 228 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 229 | 228 | a1i | ⊢ ( 𝑃  ∈  ℂ  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 230 |  | divsubdir | ⊢ ( ( 𝑃  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) ) | 
						
							| 231 | 227 229 230 | mpd3an23 | ⊢ ( 𝑃  ∈  ℂ  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) ) | 
						
							| 232 | 231 | oveq2d | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  =  ( 𝑃  −  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) ) ) | 
						
							| 233 |  | id | ⊢ ( 𝑃  ∈  ℂ  →  𝑃  ∈  ℂ ) | 
						
							| 234 |  | halfcl | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  /  2 )  ∈  ℂ ) | 
						
							| 235 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 236 | 235 | a1i | ⊢ ( 𝑃  ∈  ℂ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 237 | 233 234 236 | subsubd | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) )  =  ( ( 𝑃  −  ( 𝑃  /  2 ) )  +  ( 1  /  2 ) ) ) | 
						
							| 238 | 111 | oveq1d | ⊢ ( 𝑃  ∈  ℂ  →  ( ( 𝑃  −  ( 𝑃  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 239 | 232 237 238 | 3eqtrd | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  =  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 240 | 54 226 239 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  =  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 241 | 240 | ad2antrl | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  =  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 242 | 241 | breq1d | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  ≤  ( 𝑃  −  𝑦 )  ↔  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ≤  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 243 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 244 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 245 | 244 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 246 |  | nngt0 | ⊢ ( 𝑃  ∈  ℕ  →  0  <  𝑃 ) | 
						
							| 247 | 71 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 248 |  | divgt0 | ⊢ ( ( ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  <  ( 𝑃  /  2 ) ) | 
						
							| 249 | 99 246 247 248 | syl21anc | ⊢ ( 𝑃  ∈  ℕ  →  0  <  ( 𝑃  /  2 ) ) | 
						
							| 250 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 251 | 250 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  0  <  ( 1  /  2 ) ) | 
						
							| 252 | 100 245 249 251 | addgt0d | ⊢ ( 𝑃  ∈  ℕ  →  0  <  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 253 | 54 243 252 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  0  <  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 254 | 253 | ad2antrl | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  0  <  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 255 |  | 0red | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 256 |  | simpr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  𝑃  ∈  ℝ ) | 
						
							| 257 | 256 | rehalfcld | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 258 | 244 | a1i | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 259 | 257 258 | readdcld | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 260 |  | resubcl | ⊢ ( ( 𝑃  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑃  −  𝑦 )  ∈  ℝ ) | 
						
							| 261 | 260 | ancoms | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  −  𝑦 )  ∈  ℝ ) | 
						
							| 262 | 255 259 261 | 3jca | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) | 
						
							| 263 | 262 | ex | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑃  ∈  ℝ  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 264 | 154 263 | syl | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑃  ∈  ℝ  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 265 | 264 | adantr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑃  ∈  ℝ  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 266 | 265 | com12 | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 267 | 54 63 266 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 268 | 267 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) ) | 
						
							| 269 | 268 | impcom | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ ) ) | 
						
							| 270 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  −  𝑦 )  ∈  ℝ )  →  ( ( 0  <  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ≤  ( 𝑃  −  𝑦 ) )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 271 | 269 270 | syl | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( ( 0  <  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ∧  ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ≤  ( 𝑃  −  𝑦 ) )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 272 | 254 271 | mpand | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( ( ( 𝑃  /  2 )  +  ( 1  /  2 ) )  ≤  ( 𝑃  −  𝑦 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 273 | 242 272 | sylbid | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( ( 𝑃  −  ( ( 𝑃  −  1 )  /  2 ) )  ≤  ( 𝑃  −  𝑦 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 274 | 225 273 | sylbid | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 ) )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 275 | 274 | ex | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) ) | 
						
							| 276 | 275 | com23 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) ) | 
						
							| 277 | 188 276 | biimtrid | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ )  →  ( 𝑦  ≤  𝐻  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) ) | 
						
							| 278 | 277 | 3impia | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 279 | 278 | impcom | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  0  <  ( 𝑃  −  𝑦 ) ) | 
						
							| 280 |  | elnnz | ⊢ ( ( 𝑃  −  𝑦 )  ∈  ℕ  ↔  ( ( 𝑃  −  𝑦 )  ∈  ℤ  ∧  0  <  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 281 | 214 279 280 | sylanbrc | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑃  −  𝑦 )  ∈  ℕ ) | 
						
							| 282 | 23 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 283 |  | simpr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ¬  2  ∥  𝑦 ) | 
						
							| 284 | 283 212 | anim12ci | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑦  ∈  ℤ  ∧  ¬  2  ∥  𝑦 ) ) | 
						
							| 285 |  | omoe | ⊢ ( ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  ∧  ( 𝑦  ∈  ℤ  ∧  ¬  2  ∥  𝑦 ) )  →  2  ∥  ( 𝑃  −  𝑦 ) ) | 
						
							| 286 | 282 284 285 | syl2an2r | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  2  ∥  ( 𝑃  −  𝑦 ) ) | 
						
							| 287 |  | nnehalf | ⊢ ( ( ( 𝑃  −  𝑦 )  ∈  ℕ  ∧  2  ∥  ( 𝑃  −  𝑦 ) )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ℕ ) | 
						
							| 288 | 281 286 287 | syl2anc | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ℕ ) | 
						
							| 289 |  | simpr2 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝐻  ∈  ℕ ) | 
						
							| 290 |  | 1red | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  1  ∈  ℝ ) | 
						
							| 291 | 154 | 3ad2ant1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  𝑦  ∈  ℝ ) | 
						
							| 292 | 291 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 293 | 54 63 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℝ ) | 
						
							| 294 | 293 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 295 |  | nnge1 | ⊢ ( 𝑦  ∈  ℕ  →  1  ≤  𝑦 ) | 
						
							| 296 | 295 | 3ad2ant1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  1  ≤  𝑦 ) | 
						
							| 297 | 296 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  1  ≤  𝑦 ) | 
						
							| 298 | 290 292 294 297 | lesub2dd | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑃  −  𝑦 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 299 | 294 292 | resubcld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑃  −  𝑦 )  ∈  ℝ ) | 
						
							| 300 | 54 63 67 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 301 | 300 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 302 | 71 | a1i | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 303 |  | lediv1 | ⊢ ( ( ( 𝑃  −  𝑦 )  ∈  ℝ  ∧  ( 𝑃  −  1 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑃  −  𝑦 )  ≤  ( 𝑃  −  1 )  ↔  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 304 | 299 301 302 303 | syl3anc | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( 𝑃  −  𝑦 )  ≤  ( 𝑃  −  1 )  ↔  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 305 | 298 304 | mpbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 306 | 2 | breq2i | ⊢ ( ( ( 𝑃  −  𝑦 )  /  2 )  ≤  𝐻  ↔  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 307 | 305 306 | sylibr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  𝐻 ) | 
						
							| 308 | 288 289 307 | 3jca | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 ) )  →  ( ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  𝐻 ) ) | 
						
							| 309 | 308 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  𝐻 ) ) ) | 
						
							| 310 |  | elfz1b | ⊢ ( ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ( 1 ... 𝐻 )  ↔  ( ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  ( ( 𝑃  −  𝑦 )  /  2 )  ≤  𝐻 ) ) | 
						
							| 311 | 309 148 310 | 3imtr4g | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ¬  2  ∥  𝑦 )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 312 | 311 | ex | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  2  ∥  𝑦  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ( 1 ... 𝐻 ) ) ) ) | 
						
							| 313 | 1 312 | syl | ⊢ ( 𝜑  →  ( ¬  2  ∥  𝑦  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ( 1 ... 𝐻 ) ) ) ) | 
						
							| 314 | 313 | 3imp21 | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( ( 𝑃  −  𝑦 )  /  2 )  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 315 |  | oveq1 | ⊢ ( 𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 )  →  ( 𝑥  ·  2 )  =  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) | 
						
							| 316 | 315 | breq1d | ⊢ ( 𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 )  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 317 | 315 | oveq2d | ⊢ ( 𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 )  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  =  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) | 
						
							| 318 | 316 315 317 | ifbieq12d | ⊢ ( 𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  if ( ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) ) | 
						
							| 319 | 318 | eqeq2d | ⊢ ( 𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  if ( ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) ) ) | 
						
							| 320 | 319 | adantl | ⊢ ( ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  ∧  𝑥  =  ( ( 𝑃  −  𝑦 )  /  2 ) )  →  ( 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  =  if ( ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) ) ) | 
						
							| 321 | 1 54 226 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 322 | 321 | 3ad2ant2 | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 323 | 182 | 3ad2ant3 | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 324 | 322 323 | subcld | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  −  𝑦 )  ∈  ℂ ) | 
						
							| 325 |  | 2cnd | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  2  ∈  ℂ ) | 
						
							| 326 | 185 | a1i | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  2  ≠  0 ) | 
						
							| 327 | 324 325 326 | divcan1d | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  =  ( 𝑃  −  𝑦 ) ) | 
						
							| 328 |  | zre | ⊢ ( 𝑃  ∈  ℤ  →  𝑃  ∈  ℝ ) | 
						
							| 329 |  | halfge0 | ⊢ 0  ≤  ( 1  /  2 ) | 
						
							| 330 |  | rehalfcl | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 331 | 330 | adantl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 332 | 331 258 | subge02d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 0  ≤  ( 1  /  2 )  ↔  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 333 | 329 332 | mpbii | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ≤  ( 𝑃  /  2 ) ) | 
						
							| 334 |  | simpl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 335 | 244 | a1i | ⊢ ( 𝑃  ∈  ℝ  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 336 | 330 335 | resubcld | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 337 | 336 | adantl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 338 |  | letr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑃  /  2 )  ∈  ℝ )  →  ( ( 𝑦  ≤  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ∧  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ≤  ( 𝑃  /  2 ) )  →  𝑦  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 339 | 334 337 331 338 | syl3anc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑦  ≤  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ∧  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  ≤  ( 𝑃  /  2 ) )  →  𝑦  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 340 | 333 339 | mpan2d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑦  ≤  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) )  →  𝑦  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 341 | 80 | adantl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  𝑃  ∈  ℂ ) | 
						
							| 342 |  | 1cnd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  1  ∈  ℂ ) | 
						
							| 343 | 228 | a1i | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 344 | 341 342 343 230 | syl3anc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) ) | 
						
							| 345 | 344 | breq2d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  ↔  𝑦  ≤  ( ( 𝑃  /  2 )  −  ( 1  /  2 ) ) ) ) | 
						
							| 346 |  | lesub | ⊢ ( ( ( 𝑃  /  2 )  ∈  ℝ  ∧  𝑃  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑃  −  𝑦 )  ↔  𝑦  ≤  ( 𝑃  −  ( 𝑃  /  2 ) ) ) ) | 
						
							| 347 | 331 256 334 346 | syl3anc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑃  −  𝑦 )  ↔  𝑦  ≤  ( 𝑃  −  ( 𝑃  /  2 ) ) ) ) | 
						
							| 348 | 257 261 | lenltd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑃  −  𝑦 )  ↔  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 349 |  | 2cnd | ⊢ ( 𝑃  ∈  ℝ  →  2  ∈  ℂ ) | 
						
							| 350 | 185 | a1i | ⊢ ( 𝑃  ∈  ℝ  →  2  ≠  0 ) | 
						
							| 351 | 80 349 350 | divcan1d | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑃  /  2 )  ·  2 )  =  𝑃 ) | 
						
							| 352 | 351 | eqcomd | ⊢ ( 𝑃  ∈  ℝ  →  𝑃  =  ( ( 𝑃  /  2 )  ·  2 ) ) | 
						
							| 353 | 352 | oveq1d | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  ( 𝑃  /  2 ) )  =  ( ( ( 𝑃  /  2 )  ·  2 )  −  ( 𝑃  /  2 ) ) ) | 
						
							| 354 | 330 | recnd | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  /  2 )  ∈  ℂ ) | 
						
							| 355 | 354 349 | mulcomd | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 𝑃  /  2 )  ·  2 )  =  ( 2  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 356 | 355 | oveq1d | ⊢ ( 𝑃  ∈  ℝ  →  ( ( ( 𝑃  /  2 )  ·  2 )  −  ( 𝑃  /  2 ) )  =  ( ( 2  ·  ( 𝑃  /  2 ) )  −  ( 𝑃  /  2 ) ) ) | 
						
							| 357 | 349 354 | mulsubfacd | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 2  ·  ( 𝑃  /  2 ) )  −  ( 𝑃  /  2 ) )  =  ( ( 2  −  1 )  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 358 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 359 | 358 | a1i | ⊢ ( 𝑃  ∈  ℝ  →  ( 2  −  1 )  =  1 ) | 
						
							| 360 | 359 | oveq1d | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 2  −  1 )  ·  ( 𝑃  /  2 ) )  =  ( 1  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 361 | 354 | mullidd | ⊢ ( 𝑃  ∈  ℝ  →  ( 1  ·  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 362 | 357 360 361 | 3eqtrd | ⊢ ( 𝑃  ∈  ℝ  →  ( ( 2  ·  ( 𝑃  /  2 ) )  −  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 363 | 353 356 362 | 3eqtrd | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 364 | 363 | adantl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑃  −  ( 𝑃  /  2 ) )  =  ( 𝑃  /  2 ) ) | 
						
							| 365 | 364 | breq2d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑦  ≤  ( 𝑃  −  ( 𝑃  /  2 ) )  ↔  𝑦  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 366 | 347 348 365 | 3bitr3d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 )  ↔  𝑦  ≤  ( 𝑃  /  2 ) ) ) | 
						
							| 367 | 340 345 366 | 3imtr4d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 368 | 367 | ex | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑃  ∈  ℝ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 369 | 154 368 | syl | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑃  ∈  ℝ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 370 | 369 | com3l | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( 𝑦  ∈  ℕ  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 371 | 328 370 | syl | ⊢ ( 𝑃  ∈  ℤ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( 𝑦  ∈  ℕ  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 372 | 1 54 55 371 | 4syl | ⊢ ( 𝜑  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( 𝑦  ∈  ℕ  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 373 | 372 | adantl | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( 𝑦  ∈  ℕ  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 374 | 373 | com13 | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  ≤  ( ( 𝑃  −  1 )  /  2 )  →  ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 375 | 188 374 | biimtrid | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  ≤  𝐻  →  ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) | 
						
							| 376 | 375 | a1d | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝐻  ∈  ℕ  →  ( 𝑦  ≤  𝐻  →  ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) ) ) | 
						
							| 377 | 376 | 3imp | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 378 | 377 | com12 | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝐻  ∈  ℕ  ∧  𝑦  ≤  𝐻 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 379 | 148 378 | biimtrid | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑 )  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 380 | 379 | 3impia | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ¬  ( 𝑃  −  𝑦 )  <  ( 𝑃  /  2 ) ) | 
						
							| 381 | 327 380 | eqnbrtrd | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ¬  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 382 | 381 | iffalsed | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  if ( ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) )  =  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) | 
						
							| 383 | 327 | oveq2d | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) )  =  ( 𝑃  −  ( 𝑃  −  𝑦 ) ) ) | 
						
							| 384 | 321 182 | anim12i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  ∈  ℂ  ∧  𝑦  ∈  ℂ ) ) | 
						
							| 385 | 384 | 3adant1 | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  ∈  ℂ  ∧  𝑦  ∈  ℂ ) ) | 
						
							| 386 |  | nncan | ⊢ ( ( 𝑃  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑃  −  ( 𝑃  −  𝑦 ) )  =  𝑦 ) | 
						
							| 387 | 385 386 | syl | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  −  ( 𝑃  −  𝑦 ) )  =  𝑦 ) | 
						
							| 388 | 382 383 387 | 3eqtrrd | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  𝑦  =  if ( ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 )  <  ( 𝑃  /  2 ) ,  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ,  ( 𝑃  −  ( ( ( 𝑃  −  𝑦 )  /  2 )  ·  2 ) ) ) ) | 
						
							| 389 | 314 320 388 | rspcedvd | ⊢ ( ( ¬  2  ∥  𝑦  ∧  𝜑  ∧  𝑦  ∈  ( 1 ... 𝐻 ) )  →  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 390 | 389 | 3exp | ⊢ ( ¬  2  ∥  𝑦  →  ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) ) ) | 
						
							| 391 | 209 390 | pm2.61i | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝐻 )  →  ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) ) | 
						
							| 392 | 147 391 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 1 ... 𝐻 ) 𝑦  =  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  ↔  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 393 | 5 392 | bitrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  𝑅  ↔  𝑦  ∈  ( 1 ... 𝐻 ) ) ) | 
						
							| 394 | 393 | eqrdv | ⊢ ( 𝜑  →  ran  𝑅  =  ( 1 ... 𝐻 ) ) |