Metamath Proof Explorer
Description: Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
zred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
|
|
zaddcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
|
Assertion |
zsubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
zaddcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
3 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) |