Metamath Proof Explorer


Theorem zsubcl

Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion zsubcl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 zcn ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ )
2 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
3 negsub ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀𝑁 ) )
4 1 2 3 syl2an ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) = ( 𝑀𝑁 ) )
5 znegcl ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ )
6 zaddcl ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) ∈ ℤ )
7 5 6 sylan2 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + - 𝑁 ) ∈ ℤ )
8 4 7 eqeltrrd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ) ∈ ℤ )