Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
2 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
3 | negsub | |- ( ( M e. CC /\ N e. CC ) -> ( M + -u N ) = ( M - N ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + -u N ) = ( M - N ) ) |
5 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
6 | zaddcl | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M + -u N ) e. ZZ ) |
|
7 | 5 6 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + -u N ) e. ZZ ) |
8 | 4 7 | eqeltrrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |