Metamath Proof Explorer


Theorem nncand

Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
Assertion nncand ( 𝜑 → ( 𝐴 − ( 𝐴𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 nncan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 𝐴𝐵 ) ) = 𝐵 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 − ( 𝐴𝐵 ) ) = 𝐵 )