| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divle1le | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  1  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  1  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 3 |  | rerpdivcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 5 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 6 |  | rpre | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℝ ) | 
						
							| 8 |  | letr | ⊢ ( ( ( 𝐴  /  𝐵 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( ( 𝐴  /  𝐵 )  ≤  1  ∧  1  ≤  𝐶 )  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( ( ( 𝐴  /  𝐵 )  ≤  1  ∧  1  ≤  𝐶 )  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) | 
						
							| 10 | 9 | expd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  1  →  ( 1  ≤  𝐶  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) ) | 
						
							| 11 | 2 10 | sylbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ≤  𝐵  →  ( 1  ≤  𝐶  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  ∧  𝐶  ∈  ℝ+ )  →  ( 1  ≤  𝐶  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) ) | 
						
							| 13 | 12 | expimpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 )  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ+  →  ( ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 )  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) ) ) | 
						
							| 15 | 14 | 3imp1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  /  𝐵 )  ≤  𝐶 ) | 
						
							| 16 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 )  →  𝐶  ∈  ℝ ) | 
						
							| 18 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 19 |  | 0red | ⊢ ( 𝐶  ∈  ℝ+  →  0  ∈  ℝ ) | 
						
							| 20 |  | 1red | ⊢ ( 𝐶  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 21 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  ≤  𝐶 )  →  0  <  𝐶 ) ) | 
						
							| 22 | 19 20 6 21 | syl3anc | ⊢ ( 𝐶  ∈  ℝ+  →  ( ( 0  <  1  ∧  1  ≤  𝐶 )  →  0  <  𝐶 ) ) | 
						
							| 23 | 18 22 | mpani | ⊢ ( 𝐶  ∈  ℝ+  →  ( 1  ≤  𝐶  →  0  <  𝐶 ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 )  →  0  <  𝐶 ) | 
						
							| 25 | 17 24 | jca | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 )  →  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  →  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) | 
						
							| 27 |  | rpregt0 | ⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 29 | 16 26 28 | 3jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  →  ( 𝐴  ∈  ℝ  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  ∈  ℝ  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) ) | 
						
							| 31 |  | lediv23 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( ( 𝐴  /  𝐶 )  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴  /  𝐶 )  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  𝐶 ) ) | 
						
							| 33 | 15 32 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  /  𝐶 )  ≤  𝐵 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐶  ∈  ℝ+  ∧  1  ≤  𝐶 ) )  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  /  𝐶 )  ≤  𝐵 ) ) |