Description: A positive real is a real. (Contributed by NM, 27-Oct-2007) (Proof shortened by Steven Nguyen, 8-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
2 | 1 | sseli | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |