| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 2 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 3 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
| 5 |
1 2 4
|
divcan1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) · 2 ) = 𝐴 ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( 𝐴 / 2 ) · 2 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( 𝐴 / 2 ) ) = ( ( ( 𝐴 / 2 ) · 2 ) − ( 𝐴 / 2 ) ) ) |
| 8 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
| 9 |
8 2
|
mulcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) · 2 ) = ( 2 · ( 𝐴 / 2 ) ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) · 2 ) − ( 𝐴 / 2 ) ) = ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) ) |
| 11 |
2 8
|
mulsubfacd |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) = ( ( 2 − 1 ) · ( 𝐴 / 2 ) ) ) |
| 12 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 13 |
12
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 2 − 1 ) = 1 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 − 1 ) · ( 𝐴 / 2 ) ) = ( 1 · ( 𝐴 / 2 ) ) ) |
| 15 |
8
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) ) |
| 16 |
11 14 15
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) ) |
| 17 |
7 10 16
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) ) |