Metamath Proof Explorer


Theorem subhalfhalf

Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion subhalfhalf ( 𝐴 ∈ ℂ → ( 𝐴 − ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
2 2cnd ( 𝐴 ∈ ℂ → 2 ∈ ℂ )
3 2ne0 2 ≠ 0
4 3 a1i ( 𝐴 ∈ ℂ → 2 ≠ 0 )
5 1 2 4 divcan1d ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) · 2 ) = 𝐴 )
6 5 eqcomd ( 𝐴 ∈ ℂ → 𝐴 = ( ( 𝐴 / 2 ) · 2 ) )
7 6 oveq1d ( 𝐴 ∈ ℂ → ( 𝐴 − ( 𝐴 / 2 ) ) = ( ( ( 𝐴 / 2 ) · 2 ) − ( 𝐴 / 2 ) ) )
8 halfcl ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ )
9 8 2 mulcomd ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) · 2 ) = ( 2 · ( 𝐴 / 2 ) ) )
10 9 oveq1d ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) · 2 ) − ( 𝐴 / 2 ) ) = ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) )
11 2 8 mulsubfacd ( 𝐴 ∈ ℂ → ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) = ( ( 2 − 1 ) · ( 𝐴 / 2 ) ) )
12 2m1e1 ( 2 − 1 ) = 1
13 12 a1i ( 𝐴 ∈ ℂ → ( 2 − 1 ) = 1 )
14 13 oveq1d ( 𝐴 ∈ ℂ → ( ( 2 − 1 ) · ( 𝐴 / 2 ) ) = ( 1 · ( 𝐴 / 2 ) ) )
15 8 mulid2d ( 𝐴 ∈ ℂ → ( 1 · ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) )
16 11 14 15 3eqtrd ( 𝐴 ∈ ℂ → ( ( 2 · ( 𝐴 / 2 ) ) − ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) )
17 7 10 16 3eqtrd ( 𝐴 ∈ ℂ → ( 𝐴 − ( 𝐴 / 2 ) ) = ( 𝐴 / 2 ) )