Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | lesub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵 − 𝐶 ) ↔ 𝐶 ≤ ( 𝐵 − 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leaddsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 − 𝐶 ) ) ) | |
2 | leaddsub2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) ≤ 𝐵 ↔ 𝐶 ≤ ( 𝐵 − 𝐴 ) ) ) | |
3 | 1 2 | bitr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵 − 𝐶 ) ↔ 𝐶 ≤ ( 𝐵 − 𝐴 ) ) ) |
4 | 3 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐵 − 𝐶 ) ↔ 𝐶 ≤ ( 𝐵 − 𝐴 ) ) ) |