Metamath Proof Explorer


Theorem lesub

Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion lesub
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) )

Proof

Step Hyp Ref Expression
1 leaddsub
 |-  ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) <_ B <-> A <_ ( B - C ) ) )
2 leaddsub2
 |-  ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) <_ B <-> C <_ ( B - A ) ) )
3 1 2 bitr3d
 |-  ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) )
4 3 3com23
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( B - C ) <-> C <_ ( B - A ) ) )