| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 3 |
2
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 1 / 2 ) ∈ ℝ ) |
| 4 |
|
1red |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℝ ) |
| 5 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
| 6 |
3 4 5
|
3jca |
⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 8 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 9 |
|
axltadd |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 1 / 2 ) < 1 → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) ) |
| 10 |
7 8 9
|
mpisyl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) |
| 11 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 13 |
5 3
|
readdcld |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
| 15 |
|
peano2z |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℤ ) |
| 16 |
15
|
zred |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 18 |
|
lttr |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
| 19 |
12 14 17 18
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
| 20 |
10 19
|
mpan2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
| 21 |
|
zleltp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) |
| 22 |
21
|
ancoms |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) |
| 23 |
20 22
|
sylibrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 ≤ 𝑛 ) ) |
| 24 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 25 |
3 5
|
jca |
⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 27 |
|
ltaddpos |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 29 |
24 28
|
mpbii |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) |
| 30 |
5
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 31 |
|
lelttr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 32 |
12 30 14 31
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 33 |
29 32
|
mpan2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 34 |
23 33
|
impbid |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ↔ 𝑀 ≤ 𝑛 ) ) |
| 35 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 36 |
|
1cnd |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℂ ) |
| 37 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 38 |
37
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 39 |
|
muldivdir |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
| 40 |
35 36 38 39
|
syl3anc |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑛 ∈ ℤ → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
| 43 |
|
2z |
⊢ 2 ∈ ℤ |
| 44 |
43
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 45 |
|
id |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) |
| 46 |
44 45
|
zmulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 47 |
46
|
zcnd |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 49 |
|
pncan1 |
⊢ ( ( 2 · 𝑛 ) ∈ ℂ → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
| 52 |
|
2cnd |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) |
| 53 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 54 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ≠ 0 ) |
| 55 |
35 52 54
|
divcan3d |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 57 |
51 56
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = 𝑛 ) |
| 58 |
57
|
breq2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ 𝑛 ) ) |
| 59 |
34 42 58
|
3bitr4d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
| 60 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑁 / 2 ) ) |
| 61 |
60
|
breq2d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑁 / 2 ) ) ) |
| 62 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
| 64 |
63
|
breq2d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 65 |
61 64
|
bibi12d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ↔ ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
| 66 |
59 65
|
syl5ibcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
| 67 |
66
|
ex |
⊢ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 69 |
68
|
com23 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 70 |
69
|
rexlimdva |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 71 |
1 70
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
| 72 |
71
|
3imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |