Metamath Proof Explorer


Theorem ltaddpos

Description: Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltaddpos ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴𝐵 < ( 𝐵 + 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 ltadd2 ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵 + 0 ) < ( 𝐵 + 𝐴 ) ) )
3 1 2 mp3an1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵 + 0 ) < ( 𝐵 + 𝐴 ) ) )
4 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
5 4 addid1d ( 𝐵 ∈ ℝ → ( 𝐵 + 0 ) = 𝐵 )
6 5 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + 0 ) = 𝐵 )
7 6 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + 0 ) < ( 𝐵 + 𝐴 ) ↔ 𝐵 < ( 𝐵 + 𝐴 ) ) )
8 3 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴𝐵 < ( 𝐵 + 𝐴 ) ) )