Metamath Proof Explorer


Theorem eleq12i

Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994)

Ref Expression
Hypotheses eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion eleq12i ( 𝐴𝐶𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 eleq1i.1 𝐴 = 𝐵
2 eleq12i.2 𝐶 = 𝐷
3 2 eleq2i ( 𝐴𝐶𝐴𝐷 )
4 1 eleq1i ( 𝐴𝐷𝐵𝐷 )
5 3 4 bitri ( 𝐴𝐶𝐵𝐷 )