Step |
Hyp |
Ref |
Expression |
1 |
|
rpgecl |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |
2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
3 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
4 |
2 3
|
dividd |
|- ( B e. RR+ -> ( B / B ) = 1 ) |
5 |
4
|
eqcomd |
|- ( B e. RR+ -> 1 = ( B / B ) ) |
6 |
1 5
|
syl |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 = ( B / B ) ) |
7 |
|
simp3 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) |
8 |
|
simp1 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR+ ) |
9 |
8 1 1
|
lediv2d |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( A <_ B <-> ( B / B ) <_ ( B / A ) ) ) |
10 |
7 9
|
mpbid |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( B / B ) <_ ( B / A ) ) |
11 |
6 10
|
eqbrtrd |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 <_ ( B / A ) ) |