| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpgecl |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |
| 2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 3 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 4 |
2 3
|
dividd |
|- ( B e. RR+ -> ( B / B ) = 1 ) |
| 5 |
4
|
eqcomd |
|- ( B e. RR+ -> 1 = ( B / B ) ) |
| 6 |
1 5
|
syl |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 = ( B / B ) ) |
| 7 |
|
simp3 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) |
| 8 |
|
simp1 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR+ ) |
| 9 |
8 1 1
|
lediv2d |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( A <_ B <-> ( B / B ) <_ ( B / A ) ) ) |
| 10 |
7 9
|
mpbid |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( B / B ) <_ ( B / A ) ) |
| 11 |
6 10
|
eqbrtrd |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 <_ ( B / A ) ) |