Metamath Proof Explorer


Theorem rpcn

Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion rpcn
|- ( A e. RR+ -> A e. CC )

Proof

Step Hyp Ref Expression
1 rpre
 |-  ( A e. RR+ -> A e. RR )
2 1 recnd
 |-  ( A e. RR+ -> A e. CC )