Metamath Proof Explorer


Theorem 3lt4

Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt4 3<4

Proof

Step Hyp Ref Expression
1 3re 3
2 1 ltp1i 3<3+1
3 df-4 4=3+1
4 2 3 breqtrri 3<4