Metamath Proof Explorer


Theorem 2lt4

Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt4 2<4

Proof

Step Hyp Ref Expression
1 2lt3 2<3
2 3lt4 3<4
3 2re 2
4 3re 3
5 4re 4
6 3 4 5 lttri 2<33<42<4
7 1 2 6 mp2an 2<4