Metamath Proof Explorer


Theorem modmulmodr

Description: The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021)

Ref Expression
Assertion modmulmodr ABM+ABmodMmodM=ABmodM

Proof

Step Hyp Ref Expression
1 zcn AA
2 1 3ad2ant1 ABM+A
3 simp2 ABM+B
4 simp3 ABM+M+
5 3 4 modcld ABM+BmodM
6 5 recnd ABM+BmodM
7 2 6 mulcomd ABM+ABmodM=BmodMA
8 7 oveq1d ABM+ABmodMmodM=BmodMAmodM
9 modmulmod BAM+BmodMAmodM=BAmodM
10 9 3com12 ABM+BmodMAmodM=BAmodM
11 recn BB
12 1 11 anim12ci ABBA
13 12 3adant3 ABM+BA
14 mulcom BABA=AB
15 13 14 syl ABM+BA=AB
16 15 oveq1d ABM+BAmodM=ABmodM
17 8 10 16 3eqtrd ABM+ABmodMmodM=ABmodM