Metamath Proof Explorer


Theorem modcld

Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses modcld.1 φA
modcld.2 φB+
Assertion modcld φAmodB

Proof

Step Hyp Ref Expression
1 modcld.1 φA
2 modcld.2 φB+
3 modcl AB+AmodB
4 1 2 3 syl2anc φAmodB