Metamath Proof Explorer


Theorem modcl

Description: Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion modcl AB+AmodB

Proof

Step Hyp Ref Expression
1 modval AB+AmodB=ABAB
2 rpre B+B
3 2 adantl AB+B
4 refldivcl AB+AB
5 3 4 remulcld AB+BAB
6 resubcl ABABABAB
7 5 6 syldan AB+ABAB
8 1 7 eqeltrd AB+AmodB