Metamath Proof Explorer


Theorem modcld

Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses modcld.1 ( 𝜑𝐴 ∈ ℝ )
modcld.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion modcld ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 modcld.1 ( 𝜑𝐴 ∈ ℝ )
2 modcld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 modcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ )