Metamath Proof Explorer
Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
modcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
modcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
Assertion |
modcld |
⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
modcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
modcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |