Metamath Proof Explorer


Theorem nn0pzuz

Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion nn0pzuz N0ZN+ZZ

Proof

Step Hyp Ref Expression
1 simpr N0ZZ
2 nn0z N0N
3 zaddcl NZN+Z
4 2 3 sylan N0ZN+Z
5 zre ZZ
6 nn0addge2 ZN0ZN+Z
7 5 6 sylan ZN0ZN+Z
8 7 ancoms N0ZZN+Z
9 eluz2 N+ZZZN+ZZN+Z
10 1 4 8 9 syl3anbrc N0ZN+ZZ