| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
|
| 2 |
|
gausslemma2d.h |
|
| 3 |
|
gausslemma2d.r |
|
| 4 |
|
gausslemma2d.m |
|
| 5 |
|
gausslemma2d.n |
|
| 6 |
1 2 3 4
|
gausslemma2dlem5a |
|
| 7 |
|
fzfi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
neg1cn |
|
| 10 |
9
|
a1i |
|
| 11 |
|
elfzelz |
|
| 12 |
|
2z |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
zmulcld |
|
| 15 |
14
|
zcnd |
|
| 16 |
15
|
adantl |
|
| 17 |
8 10 16
|
fprodmul |
|
| 18 |
7 9
|
pm3.2i |
|
| 19 |
|
fprodconst |
|
| 20 |
18 19
|
mp1i |
|
| 21 |
|
nnoddn2prm |
|
| 22 |
|
nnre |
|
| 23 |
22
|
adantr |
|
| 24 |
1 21 23
|
3syl |
|
| 25 |
|
4re |
|
| 26 |
25
|
a1i |
|
| 27 |
|
4ne0 |
|
| 28 |
27
|
a1i |
|
| 29 |
24 26 28
|
redivcld |
|
| 30 |
29
|
flcld |
|
| 31 |
4 30
|
eqeltrid |
|
| 32 |
31
|
peano2zd |
|
| 33 |
|
nnz |
|
| 34 |
|
oddm1d2 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
biimpa |
|
| 37 |
1 21 36
|
3syl |
|
| 38 |
2 37
|
eqeltrid |
|
| 39 |
1 4 2
|
gausslemma2dlem0f |
|
| 40 |
|
eluz2 |
|
| 41 |
32 38 39 40
|
syl3anbrc |
|
| 42 |
|
hashfz |
|
| 43 |
41 42
|
syl |
|
| 44 |
38
|
zcnd |
|
| 45 |
31
|
zcnd |
|
| 46 |
|
1cnd |
|
| 47 |
44 45 46
|
nppcan2d |
|
| 48 |
47 5
|
eqtr4di |
|
| 49 |
43 48
|
eqtrd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
20 50
|
eqtrd |
|
| 52 |
51
|
oveq1d |
|
| 53 |
17 52
|
eqtrd |
|
| 54 |
53
|
oveq1d |
|
| 55 |
6 54
|
eqtrd |
|