Description: The product of constant terms ( k is not free in B ). (Contributed by Scott Fenton, 12-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | fprodconst | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp0 | |
|
2 | 1 | eqcomd | |
3 | prodeq1 | |
|
4 | prod0 | |
|
5 | 3 4 | eqtrdi | |
6 | fveq2 | |
|
7 | hash0 | |
|
8 | 6 7 | eqtrdi | |
9 | 8 | oveq2d | |
10 | 5 9 | eqeq12d | |
11 | 2 10 | syl5ibrcom | |
12 | 11 | adantl | |
13 | eqidd | |
|
14 | simprl | |
|
15 | simprr | |
|
16 | simpllr | |
|
17 | simpllr | |
|
18 | elfznn | |
|
19 | 18 | adantl | |
20 | fvconst2g | |
|
21 | 17 19 20 | syl2anc | |
22 | 13 14 15 16 21 | fprod | |
23 | expnnval | |
|
24 | 23 | ad2ant2lr | |
25 | 22 24 | eqtr4d | |
26 | 25 | expr | |
27 | 26 | exlimdv | |
28 | 27 | expimpd | |
29 | fz1f1o | |
|
30 | 29 | adantr | |
31 | 12 28 30 | mpjaod | |