Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodn0.1 | |
|
fprodn0.2 | |
||
fprodn0.3 | |
||
Assertion | fprodn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodn0.1 | |
|
2 | fprodn0.2 | |
|
3 | fprodn0.3 | |
|
4 | prodeq1 | |
|
5 | prod0 | |
|
6 | 4 5 | eqtrdi | |
7 | ax-1ne0 | |
|
8 | 7 | a1i | |
9 | 6 8 | eqnetrd | |
10 | 9 | a1i | |
11 | prodfc | |
|
12 | fveq2 | |
|
13 | simprl | |
|
14 | simprr | |
|
15 | 2 | fmpttd | |
16 | 15 | adantr | |
17 | 16 | ffvelcdmda | |
18 | f1of | |
|
19 | 14 18 | syl | |
20 | fvco3 | |
|
21 | 19 20 | sylan | |
22 | 12 13 14 17 21 | fprod | |
23 | 11 22 | eqtr3id | |
24 | nnuz | |
|
25 | 13 24 | eleqtrdi | |
26 | fco | |
|
27 | 16 19 26 | syl2anc | |
28 | 27 | ffvelcdmda | |
29 | fvco3 | |
|
30 | 19 29 | sylan | |
31 | 18 | ffvelcdmda | |
32 | 31 | adantll | |
33 | simpr | |
|
34 | nfcv | |
|
35 | nfv | |
|
36 | nfcsb1v | |
|
37 | 36 | nfel1 | |
38 | 35 37 | nfim | |
39 | csbeq1a | |
|
40 | 39 | eleq1d | |
41 | 40 | imbi2d | |
42 | 2 | expcom | |
43 | 34 38 41 42 | vtoclgaf | |
44 | 43 | impcom | |
45 | eqid | |
|
46 | 45 | fvmpts | |
47 | 33 44 46 | syl2anc | |
48 | nfcv | |
|
49 | 36 48 | nfne | |
50 | 35 49 | nfim | |
51 | 39 | neeq1d | |
52 | 51 | imbi2d | |
53 | 3 | expcom | |
54 | 34 50 52 53 | vtoclgaf | |
55 | 54 | impcom | |
56 | 47 55 | eqnetrd | |
57 | 32 56 | sylan2 | |
58 | 57 | anassrs | |
59 | 30 58 | eqnetrd | |
60 | 25 28 59 | prodfn0 | |
61 | 23 60 | eqnetrd | |
62 | 61 | expr | |
63 | 62 | exlimdv | |
64 | 63 | expimpd | |
65 | fz1f1o | |
|
66 | 1 65 | syl | |
67 | 10 64 66 | mpjaod | |