Metamath Proof Explorer


Theorem fprodn0

Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Hypotheses fprodn0.1 φAFin
fprodn0.2 φkAB
fprodn0.3 φkAB0
Assertion fprodn0 φkAB0

Proof

Step Hyp Ref Expression
1 fprodn0.1 φAFin
2 fprodn0.2 φkAB
3 fprodn0.3 φkAB0
4 prodeq1 A=kAB=kB
5 prod0 kB=1
6 4 5 eqtrdi A=kAB=1
7 ax-1ne0 10
8 7 a1i A=10
9 6 8 eqnetrd A=kAB0
10 9 a1i φA=kAB0
11 prodfc mAkABm=kAB
12 fveq2 m=fnkABm=kABfn
13 simprl φAf:1A1-1 ontoAA
14 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
15 2 fmpttd φkAB:A
16 15 adantr φAf:1A1-1 ontoAkAB:A
17 16 ffvelcdmda φAf:1A1-1 ontoAmAkABm
18 f1of f:1A1-1 ontoAf:1AA
19 14 18 syl φAf:1A1-1 ontoAf:1AA
20 fvco3 f:1AAn1AkABfn=kABfn
21 19 20 sylan φAf:1A1-1 ontoAn1AkABfn=kABfn
22 12 13 14 17 21 fprod φAf:1A1-1 ontoAmAkABm=seq1×kABfA
23 11 22 eqtr3id φAf:1A1-1 ontoAkAB=seq1×kABfA
24 nnuz =1
25 13 24 eleqtrdi φAf:1A1-1 ontoAA1
26 fco kAB:Af:1AAkABf:1A
27 16 19 26 syl2anc φAf:1A1-1 ontoAkABf:1A
28 27 ffvelcdmda φAf:1A1-1 ontoAm1AkABfm
29 fvco3 f:1AAm1AkABfm=kABfm
30 19 29 sylan φAf:1A1-1 ontoAm1AkABfm=kABfm
31 18 ffvelcdmda f:1A1-1 ontoAm1AfmA
32 31 adantll Af:1A1-1 ontoAm1AfmA
33 simpr φfmAfmA
34 nfcv _kfm
35 nfv kφ
36 nfcsb1v _kfm/kB
37 36 nfel1 kfm/kB
38 35 37 nfim kφfm/kB
39 csbeq1a k=fmB=fm/kB
40 39 eleq1d k=fmBfm/kB
41 40 imbi2d k=fmφBφfm/kB
42 2 expcom kAφB
43 34 38 41 42 vtoclgaf fmAφfm/kB
44 43 impcom φfmAfm/kB
45 eqid kAB=kAB
46 45 fvmpts fmAfm/kBkABfm=fm/kB
47 33 44 46 syl2anc φfmAkABfm=fm/kB
48 nfcv _k0
49 36 48 nfne kfm/kB0
50 35 49 nfim kφfm/kB0
51 39 neeq1d k=fmB0fm/kB0
52 51 imbi2d k=fmφB0φfm/kB0
53 3 expcom kAφB0
54 34 50 52 53 vtoclgaf fmAφfm/kB0
55 54 impcom φfmAfm/kB0
56 47 55 eqnetrd φfmAkABfm0
57 32 56 sylan2 φAf:1A1-1 ontoAm1AkABfm0
58 57 anassrs φAf:1A1-1 ontoAm1AkABfm0
59 30 58 eqnetrd φAf:1A1-1 ontoAm1AkABfm0
60 25 28 59 prodfn0 φAf:1A1-1 ontoAseq1×kABfA0
61 23 60 eqnetrd φAf:1A1-1 ontoAkAB0
62 61 expr φAf:1A1-1 ontoAkAB0
63 62 exlimdv φAff:1A1-1 ontoAkAB0
64 63 expimpd φAff:1A1-1 ontoAkAB0
65 fz1f1o AFinA=Aff:1A1-1 ontoA
66 1 65 syl φA=Aff:1A1-1 ontoA
67 10 64 66 mpjaod φkAB0