Metamath Proof Explorer


Theorem prodfn0

Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018)

Ref Expression
Hypotheses prodfn0.1 φ N M
prodfn0.2 φ k M N F k
prodfn0.3 φ k M N F k 0
Assertion prodfn0 φ seq M × F N 0

Proof

Step Hyp Ref Expression
1 prodfn0.1 φ N M
2 prodfn0.2 φ k M N F k
3 prodfn0.3 φ k M N F k 0
4 eluzfz2 N M N M N
5 1 4 syl φ N M N
6 fveq2 m = M seq M × F m = seq M × F M
7 6 neeq1d m = M seq M × F m 0 seq M × F M 0
8 7 imbi2d m = M φ seq M × F m 0 φ seq M × F M 0
9 fveq2 m = n seq M × F m = seq M × F n
10 9 neeq1d m = n seq M × F m 0 seq M × F n 0
11 10 imbi2d m = n φ seq M × F m 0 φ seq M × F n 0
12 fveq2 m = n + 1 seq M × F m = seq M × F n + 1
13 12 neeq1d m = n + 1 seq M × F m 0 seq M × F n + 1 0
14 13 imbi2d m = n + 1 φ seq M × F m 0 φ seq M × F n + 1 0
15 fveq2 m = N seq M × F m = seq M × F N
16 15 neeq1d m = N seq M × F m 0 seq M × F N 0
17 16 imbi2d m = N φ seq M × F m 0 φ seq M × F N 0
18 eluzfz1 N M M M N
19 elfzelz M M N M
20 19 adantl φ M M N M
21 seq1 M seq M × F M = F M
22 20 21 syl φ M M N seq M × F M = F M
23 fveq2 k = M F k = F M
24 23 neeq1d k = M F k 0 F M 0
25 24 imbi2d k = M φ F k 0 φ F M 0
26 3 expcom k M N φ F k 0
27 25 26 vtoclga M M N φ F M 0
28 27 impcom φ M M N F M 0
29 22 28 eqnetrd φ M M N seq M × F M 0
30 29 expcom M M N φ seq M × F M 0
31 18 30 syl N M φ seq M × F M 0
32 elfzouz n M ..^ N n M
33 32 3ad2ant2 φ n M ..^ N seq M × F n 0 n M
34 seqp1 n M seq M × F n + 1 = seq M × F n F n + 1
35 33 34 syl φ n M ..^ N seq M × F n 0 seq M × F n + 1 = seq M × F n F n + 1
36 elfzofz n M ..^ N n M N
37 elfzuz n M N n M
38 37 adantl φ n M N n M
39 elfzuz3 n M N N n
40 fzss2 N n M n M N
41 39 40 syl n M N M n M N
42 41 sselda n M N k M n k M N
43 42 2 sylan2 φ n M N k M n F k
44 43 anassrs φ n M N k M n F k
45 mulcl k x k x
46 45 adantl φ n M N k x k x
47 38 44 46 seqcl φ n M N seq M × F n
48 36 47 sylan2 φ n M ..^ N seq M × F n
49 48 3adant3 φ n M ..^ N seq M × F n 0 seq M × F n
50 fzofzp1 n M ..^ N n + 1 M N
51 fveq2 k = n + 1 F k = F n + 1
52 51 eleq1d k = n + 1 F k F n + 1
53 52 imbi2d k = n + 1 φ F k φ F n + 1
54 2 expcom k M N φ F k
55 53 54 vtoclga n + 1 M N φ F n + 1
56 50 55 syl n M ..^ N φ F n + 1
57 56 impcom φ n M ..^ N F n + 1
58 57 3adant3 φ n M ..^ N seq M × F n 0 F n + 1
59 simp3 φ n M ..^ N seq M × F n 0 seq M × F n 0
60 51 neeq1d k = n + 1 F k 0 F n + 1 0
61 60 imbi2d k = n + 1 φ F k 0 φ F n + 1 0
62 61 26 vtoclga n + 1 M N φ F n + 1 0
63 62 impcom φ n + 1 M N F n + 1 0
64 50 63 sylan2 φ n M ..^ N F n + 1 0
65 64 3adant3 φ n M ..^ N seq M × F n 0 F n + 1 0
66 49 58 59 65 mulne0d φ n M ..^ N seq M × F n 0 seq M × F n F n + 1 0
67 35 66 eqnetrd φ n M ..^ N seq M × F n 0 seq M × F n + 1 0
68 67 3exp φ n M ..^ N seq M × F n 0 seq M × F n + 1 0
69 68 com12 n M ..^ N φ seq M × F n 0 seq M × F n + 1 0
70 69 a2d n M ..^ N φ seq M × F n 0 φ seq M × F n + 1 0
71 8 11 14 17 31 70 fzind2 N M N φ seq M × F N 0
72 5 71 mpcom φ seq M × F N 0