Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodfn0.1 | |
|
prodfn0.2 | |
||
prodfn0.3 | |
||
Assertion | prodfn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfn0.1 | |
|
2 | prodfn0.2 | |
|
3 | prodfn0.3 | |
|
4 | eluzfz2 | |
|
5 | 1 4 | syl | |
6 | fveq2 | |
|
7 | 6 | neeq1d | |
8 | 7 | imbi2d | |
9 | fveq2 | |
|
10 | 9 | neeq1d | |
11 | 10 | imbi2d | |
12 | fveq2 | |
|
13 | 12 | neeq1d | |
14 | 13 | imbi2d | |
15 | fveq2 | |
|
16 | 15 | neeq1d | |
17 | 16 | imbi2d | |
18 | eluzfz1 | |
|
19 | elfzelz | |
|
20 | 19 | adantl | |
21 | seq1 | |
|
22 | 20 21 | syl | |
23 | fveq2 | |
|
24 | 23 | neeq1d | |
25 | 24 | imbi2d | |
26 | 3 | expcom | |
27 | 25 26 | vtoclga | |
28 | 27 | impcom | |
29 | 22 28 | eqnetrd | |
30 | 29 | expcom | |
31 | 18 30 | syl | |
32 | elfzouz | |
|
33 | 32 | 3ad2ant2 | |
34 | seqp1 | |
|
35 | 33 34 | syl | |
36 | elfzofz | |
|
37 | elfzuz | |
|
38 | 37 | adantl | |
39 | elfzuz3 | |
|
40 | fzss2 | |
|
41 | 39 40 | syl | |
42 | 41 | sselda | |
43 | 42 2 | sylan2 | |
44 | 43 | anassrs | |
45 | mulcl | |
|
46 | 45 | adantl | |
47 | 38 44 46 | seqcl | |
48 | 36 47 | sylan2 | |
49 | 48 | 3adant3 | |
50 | fzofzp1 | |
|
51 | fveq2 | |
|
52 | 51 | eleq1d | |
53 | 52 | imbi2d | |
54 | 2 | expcom | |
55 | 53 54 | vtoclga | |
56 | 50 55 | syl | |
57 | 56 | impcom | |
58 | 57 | 3adant3 | |
59 | simp3 | |
|
60 | 51 | neeq1d | |
61 | 60 | imbi2d | |
62 | 61 26 | vtoclga | |
63 | 62 | impcom | |
64 | 50 63 | sylan2 | |
65 | 64 | 3adant3 | |
66 | 49 58 59 65 | mulne0d | |
67 | 35 66 | eqnetrd | |
68 | 67 | 3exp | |
69 | 68 | com12 | |
70 | 69 | a2d | |
71 | 8 11 14 17 31 70 | fzind2 | |
72 | 5 71 | mpcom | |