Metamath Proof Explorer


Theorem prodfn0

Description: No term of a nonzero infinite product is zero. (Contributed by Scott Fenton, 14-Jan-2018)

Ref Expression
Hypotheses prodfn0.1 φNM
prodfn0.2 φkMNFk
prodfn0.3 φkMNFk0
Assertion prodfn0 φseqM×FN0

Proof

Step Hyp Ref Expression
1 prodfn0.1 φNM
2 prodfn0.2 φkMNFk
3 prodfn0.3 φkMNFk0
4 eluzfz2 NMNMN
5 1 4 syl φNMN
6 fveq2 m=MseqM×Fm=seqM×FM
7 6 neeq1d m=MseqM×Fm0seqM×FM0
8 7 imbi2d m=MφseqM×Fm0φseqM×FM0
9 fveq2 m=nseqM×Fm=seqM×Fn
10 9 neeq1d m=nseqM×Fm0seqM×Fn0
11 10 imbi2d m=nφseqM×Fm0φseqM×Fn0
12 fveq2 m=n+1seqM×Fm=seqM×Fn+1
13 12 neeq1d m=n+1seqM×Fm0seqM×Fn+10
14 13 imbi2d m=n+1φseqM×Fm0φseqM×Fn+10
15 fveq2 m=NseqM×Fm=seqM×FN
16 15 neeq1d m=NseqM×Fm0seqM×FN0
17 16 imbi2d m=NφseqM×Fm0φseqM×FN0
18 eluzfz1 NMMMN
19 elfzelz MMNM
20 19 adantl φMMNM
21 seq1 MseqM×FM=FM
22 20 21 syl φMMNseqM×FM=FM
23 fveq2 k=MFk=FM
24 23 neeq1d k=MFk0FM0
25 24 imbi2d k=MφFk0φFM0
26 3 expcom kMNφFk0
27 25 26 vtoclga MMNφFM0
28 27 impcom φMMNFM0
29 22 28 eqnetrd φMMNseqM×FM0
30 29 expcom MMNφseqM×FM0
31 18 30 syl NMφseqM×FM0
32 elfzouz nM..^NnM
33 32 3ad2ant2 φnM..^NseqM×Fn0nM
34 seqp1 nMseqM×Fn+1=seqM×FnFn+1
35 33 34 syl φnM..^NseqM×Fn0seqM×Fn+1=seqM×FnFn+1
36 elfzofz nM..^NnMN
37 elfzuz nMNnM
38 37 adantl φnMNnM
39 elfzuz3 nMNNn
40 fzss2 NnMnMN
41 39 40 syl nMNMnMN
42 41 sselda nMNkMnkMN
43 42 2 sylan2 φnMNkMnFk
44 43 anassrs φnMNkMnFk
45 mulcl kxkx
46 45 adantl φnMNkxkx
47 38 44 46 seqcl φnMNseqM×Fn
48 36 47 sylan2 φnM..^NseqM×Fn
49 48 3adant3 φnM..^NseqM×Fn0seqM×Fn
50 fzofzp1 nM..^Nn+1MN
51 fveq2 k=n+1Fk=Fn+1
52 51 eleq1d k=n+1FkFn+1
53 52 imbi2d k=n+1φFkφFn+1
54 2 expcom kMNφFk
55 53 54 vtoclga n+1MNφFn+1
56 50 55 syl nM..^NφFn+1
57 56 impcom φnM..^NFn+1
58 57 3adant3 φnM..^NseqM×Fn0Fn+1
59 simp3 φnM..^NseqM×Fn0seqM×Fn0
60 51 neeq1d k=n+1Fk0Fn+10
61 60 imbi2d k=n+1φFk0φFn+10
62 61 26 vtoclga n+1MNφFn+10
63 62 impcom φn+1MNFn+10
64 50 63 sylan2 φnM..^NFn+10
65 64 3adant3 φnM..^NseqM×Fn0Fn+10
66 49 58 59 65 mulne0d φnM..^NseqM×Fn0seqM×FnFn+10
67 35 66 eqnetrd φnM..^NseqM×Fn0seqM×Fn+10
68 67 3exp φnM..^NseqM×Fn0seqM×Fn+10
69 68 com12 nM..^NφseqM×Fn0seqM×Fn+10
70 69 a2d nM..^NφseqM×Fn0φseqM×Fn+10
71 8 11 14 17 31 70 fzind2 NMNφseqM×FN0
72 5 71 mpcom φseqM×FN0