Metamath Proof Explorer


Theorem fzsplit2

Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion fzsplit2 K+1MNKMN=MKK+1N

Proof

Step Hyp Ref Expression
1 elfzelz xMNx
2 1 zred xMNx
3 eluzel2 NKK
4 3 adantl K+1MNKK
5 4 zred K+1MNKK
6 lelttric xKxKK<x
7 2 5 6 syl2anr K+1MNKxMNxKK<x
8 elfzuz xMNxM
9 elfz5 xMKxMKxK
10 8 4 9 syl2anr K+1MNKxMNxMKxK
11 simpl K+1MNKK+1M
12 eluzelz K+1MK+1
13 11 12 syl K+1MNKK+1
14 eluz K+1xxK+1K+1x
15 13 1 14 syl2an K+1MNKxMNxK+1K+1x
16 elfzuz3 xMNNx
17 16 adantl K+1MNKxMNNx
18 elfzuzb xK+1NxK+1Nx
19 18 rbaib NxxK+1NxK+1
20 17 19 syl K+1MNKxMNxK+1NxK+1
21 zltp1le KxK<xK+1x
22 4 1 21 syl2an K+1MNKxMNK<xK+1x
23 15 20 22 3bitr4d K+1MNKxMNxK+1NK<x
24 10 23 orbi12d K+1MNKxMNxMKxK+1NxKK<x
25 7 24 mpbird K+1MNKxMNxMKxK+1N
26 elfzuz xMKxM
27 26 adantl K+1MNKxMKxM
28 simpr K+1MNKNK
29 elfzuz3 xMKKx
30 uztrn NKKxNx
31 28 29 30 syl2an K+1MNKxMKNx
32 elfzuzb xMNxMNx
33 27 31 32 sylanbrc K+1MNKxMKxMN
34 elfzuz xK+1NxK+1
35 uztrn xK+1K+1MxM
36 34 11 35 syl2anr K+1MNKxK+1NxM
37 elfzuz3 xK+1NNx
38 37 adantl K+1MNKxK+1NNx
39 36 38 32 sylanbrc K+1MNKxK+1NxMN
40 33 39 jaodan K+1MNKxMKxK+1NxMN
41 25 40 impbida K+1MNKxMNxMKxK+1N
42 elun xMKK+1NxMKxK+1N
43 41 42 bitr4di K+1MNKxMNxMKK+1N
44 43 eqrdv K+1MNKMN=MKK+1N