Database
REAL AND COMPLEX NUMBERS
Order sets
Finite intervals of integers
elfz5
Next ⟩
elfz4
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfz5
Description:
Membership in a finite set of sequential integers.
(Contributed by
NM
, 26-Dec-2005)
Ref
Expression
Assertion
elfz5
⊢
K
∈
ℤ
≥
M
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
≤
N
Proof
Step
Hyp
Ref
Expression
1
eluzelz
⊢
K
∈
ℤ
≥
M
→
K
∈
ℤ
2
eluzel2
⊢
K
∈
ℤ
≥
M
→
M
∈
ℤ
3
1
2
jca
⊢
K
∈
ℤ
≥
M
→
K
∈
ℤ
∧
M
∈
ℤ
4
elfz
⊢
K
∈
ℤ
∧
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
5
4
3expa
⊢
K
∈
ℤ
∧
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
6
3
5
sylan
⊢
K
∈
ℤ
≥
M
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
7
eluzle
⊢
K
∈
ℤ
≥
M
→
M
≤
K
8
7
biantrurd
⊢
K
∈
ℤ
≥
M
→
K
≤
N
↔
M
≤
K
∧
K
≤
N
9
8
adantr
⊢
K
∈
ℤ
≥
M
∧
N
∈
ℤ
→
K
≤
N
↔
M
≤
K
∧
K
≤
N
10
6
9
bitr4d
⊢
K
∈
ℤ
≥
M
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
≤
N