Metamath Proof Explorer


Theorem fprodfac

Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion fprodfac A0A!=k=1Ak

Proof

Step Hyp Ref Expression
1 elnn0 A0AA=0
2 facnn AA!=seq1×IA
3 vex kV
4 fvi kVIk=k
5 3 4 mp1i Ak1AIk=k
6 elnnuz AA1
7 6 biimpi AA1
8 elfznn k1Ak
9 8 nncnd k1Ak
10 9 adantl Ak1Ak
11 5 7 10 fprodser Ak=1Ak=seq1×IA
12 2 11 eqtr4d AA!=k=1Ak
13 prod0 kk=1
14 13 eqcomi 1=kk
15 fveq2 A=0A!=0!
16 fac0 0!=1
17 15 16 eqtrdi A=0A!=1
18 oveq2 A=01A=10
19 fz10 10=
20 18 19 eqtrdi A=01A=
21 20 prodeq1d A=0k=1Ak=kk
22 14 17 21 3eqtr4a A=0A!=k=1Ak
23 12 22 jaoi AA=0A!=k=1Ak
24 1 23 sylbi A0A!=k=1Ak