Metamath Proof Explorer

Theorem reexpcld

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 φ A
reexpcld.2 φ N 0
Assertion reexpcld φ A N


Step Hyp Ref Expression
1 reexpcld.1 φ A
2 reexpcld.2 φ N 0
3 reexpcl A N 0 A N
4 1 2 3 syl2anc φ A N