Metamath Proof Explorer


Theorem expge0d

Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 φA
reexpcld.2 φN0
expge0d.3 φ0A
Assertion expge0d φ0AN

Proof

Step Hyp Ref Expression
1 reexpcld.1 φA
2 reexpcld.2 φN0
3 expge0d.3 φ0A
4 expge0 AN00A0AN
5 1 2 3 4 syl3anc φ0AN