Metamath Proof Explorer


Theorem expge1d

Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 φA
reexpcld.2 φN0
expge1d.3 φ1A
Assertion expge1d φ1AN

Proof

Step Hyp Ref Expression
1 reexpcld.1 φA
2 reexpcld.2 φN0
3 expge1d.3 φ1A
4 expge1 AN01A1AN
5 1 2 3 4 syl3anc φ1AN