| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lt1 |  |-  0 < 1 | 
						
							| 2 |  | 0re |  |-  0 e. RR | 
						
							| 3 |  | 1re |  |-  1 e. RR | 
						
							| 4 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) | 
						
							| 5 | 2 3 4 | mp3an12 |  |-  ( N e. RR -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) | 
						
							| 6 | 1 5 | mpani |  |-  ( N e. RR -> ( 1 < N -> 0 < N ) ) | 
						
							| 7 | 6 | imdistani |  |-  ( ( N e. RR /\ 1 < N ) -> ( N e. RR /\ 0 < N ) ) | 
						
							| 8 |  | elrp |  |-  ( N e. RR+ <-> ( N e. RR /\ 0 < N ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( ( N e. RR /\ 1 < N ) -> N e. RR+ ) | 
						
							| 10 | 9 3 | jctil |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 e. RR /\ N e. RR+ ) ) | 
						
							| 11 |  | simpr |  |-  ( ( N e. RR /\ 1 < N ) -> 1 < N ) | 
						
							| 12 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 13 | 11 12 | jctil |  |-  ( ( N e. RR /\ 1 < N ) -> ( 0 <_ 1 /\ 1 < N ) ) | 
						
							| 14 |  | modid |  |-  ( ( ( 1 e. RR /\ N e. RR+ ) /\ ( 0 <_ 1 /\ 1 < N ) ) -> ( 1 mod N ) = 1 ) | 
						
							| 15 | 10 13 14 | syl2anc |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |