| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N e. NN ) | 
						
							| 2 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 3 | 2 | div1d |  |-  ( N e. NN -> ( N / 1 ) = N ) | 
						
							| 4 |  | oveq2 |  |-  ( ( C gcd N ) = 1 -> ( N / ( C gcd N ) ) = ( N / 1 ) ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ( C gcd N ) = 1 -> ( N / 1 ) = ( N / ( C gcd N ) ) ) | 
						
							| 6 | 3 5 | sylan9req |  |-  ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N = ( N / ( C gcd N ) ) ) | 
						
							| 7 | 1 6 | jca |  |-  ( ( N e. NN /\ ( C gcd N ) = 1 ) -> ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) | 
						
							| 8 |  | cncongr |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ ( C gcd N ) = 1 ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |