| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 2 |
|
oddp1d2 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 4 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 5 |
4
|
nnred |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 6 |
|
2re |
⊢ 2 ∈ ℝ |
| 7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 8 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 9 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 10 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 11 |
|
0lt1 |
⊢ 0 < 1 |
| 12 |
11
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 13 |
8 9 10 12
|
addgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 14 |
|
2pos |
⊢ 0 < 2 |
| 15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 2 ) |
| 16 |
5 7 13 15
|
divgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 𝑁 + 1 ) / 2 ) ) |
| 17 |
16
|
anim1ci |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) |
| 18 |
|
elnnz |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) |
| 20 |
19
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 21 |
|
nnz |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) |
| 22 |
20 21
|
impbid1 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 23 |
3 22
|
bitrd |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |