Metamath Proof Explorer


Theorem gcdnncl

Description: Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Assertion gcdnncl MNMgcdN

Proof

Step Hyp Ref Expression
1 simpl MNM
2 1 nnzd MNM
3 simpr MNN
4 3 nnzd MNN
5 3 nnne0d MNN0
6 5 neneqd MN¬N=0
7 6 intnand MN¬M=0N=0
8 gcdn0cl MN¬M=0N=0MgcdN
9 2 4 7 8 syl21anc MNMgcdN